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ABSTRACT

Application and Evaluation of Full-Field Surrogate Models
in Engineering Design Space Exploration

Christopher Murray Thelin
Department of Mechanical Engineering, BYU

Master of Science

When designing an engineering part, better decisions are made by exploring the entire
space of design variations. This design space exploration (DSE) may be accomplished manually
or via optimization. In engineering, evaluating a design during DSE often consists of running
expensive simulations, such as finite element analysis (FEA) in order to understand the structural
response to design changes. The computational cost of these simulations can make thorough DSE
infeasible, and only a relatively small subset of the designs are explored.

Surrogate models have been used to make cheap predictions of certain simulation results.
Commonly, these models only predict single values (SV) that are meant to represent an entire part’s
response, such as a maximum stress or average displacement. However, these single values cannot
return a complete prediction of the detailed nodal results of these simulations. Recently, surrogate
models have been developed that can predict the full field (FF) of nodal responses. These FF
surrogate models have the potential to make thorough and detailed DSE much more feasible and
introduce further design benefits. However, these FF surrogate models have not yet been applied
to real engineering activities or been demonstrated in DSE contexts, nor have they been directly
compared with SV surrogate models in terms of accuracy and benefits.

This thesis seeks to build confidence in FF surrogate models for engineering work by ap-
plying FF surrogate models to real DSE and engineering activities and exploring their comparative
benefits with SV surrogate models. A user experiment which explores the effects of FF surro-
gate models in simple DSE activities helps to validate previous claims that FF surrogate models
can enable interactive DSE. FF surrogate models are used to create Goodman diagrams for fa-
tigue analysis, and found to be more accurate than SV surrogate models in predicting fatigue risk.
Mode shapes are predicted and the accuracy of mode comparison predictions are found to require a
larger amount of training samples when the data is highly nonlinear than do SV surrogate models.
Finally, FF surrogate models enable spatially-defined objectives and constraints in optimization
routines that efficiently search a design space and improve designs.

The studies in this work present many unique FF-enabled design benefits for real engi-
neering work. These include predicting a complete (rather than a summary) response, enabling
interactive DSE of complex simulations, new three-dimensional visualizations of analysis results,
and increased accuracy.

Keywords: surrogate models, design space exploration, finite element analysis, fatigue life, modal
analysis, optimization
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CHAPTER 1. INTRODUCTION

On April 17, 2018, the left engine on Southwest Flight 1380 from LaGuardia to Dallas

experienced an uncontained engine failure. Debris from the engine tore through the wing and

fuselage. Tragically, the incident killed a passenger. Subsequent investigations showed that one

of the fan blades had broken at the root, with evidence indicating that metal fatigue had been the

cause of failure. A similar incident occurred in 2016 with a fan blade also failing due to metal

fatigue.

While the vast majority of engine parts do not fail catastrophically, the fatigue experi-

enced in these incidents indicate that the current design process is not always sufficiently thor-

ough. Vibration-related failures account for approximately 60% of aero-engine failures, making

the ability to accurately and easily predict failure due to fatigue an essential part of the jet engine

design process [1]. Moreover, as companies push designs for greater engine performance and effi-

ciency, it will become increasingly difficult to design parts that simultaneously meet aerodynamic,

structural, and weight demands [2]. This requires more extreme designs with smaller margins of

allowable error. For example, Pratt & Whitney has designed the geared turbofan (GTF) which

produces up to 16% more thrust [3]. However, because the fan blades must be simultaneously

light and strong, there is very little room for error. Margins of safety, part tolerances, and weight

allowances decrease. The extreme performance demands make the parts difficult to design, as well

as to repair. When parts are incorrectly manufactured, they must be scrapped and represent a sig-

nificant source of loss for these companies. Without additional tools for design, the likelihood of

parts failing will grow. Specifically, companies that are striving to push the current boundaries but

keep passengers safe need efficient and simpler methods for finding designs that achieve higher

performance but maintain sufficient strength.

In order to find the best designs possible, it is important to thoroughly explore the design

space. The design space is the collection of all possible design variations. Each design in the design
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space is uniquely defined by the value of its design parameters. When used with a parameterized

model, design space exploration (DSE) consists of varying these parameters and examining the

new designs. The new designs are used in engineering simulations to obtain results such as stress,

displacements, etc. The results of these simulations are considered the response to changes in the

design parameters.

Finite element analysis (FEA) is the most common form of simulation used in structural

engineering design [4]. These simulations are invaluable, but are computationally expensive (in

terms of time and computing resources). Although computing power has increased over time, sim-

ulations have also become more complex in order to meet the demands of a competitive aerospace

market [5]. Consequently, even with modern computing power, the quantity and complexity of

aerospace simulations that need to be performed continue to make their computational cost a lim-

iting factor for their use during the design process.

Surrogate models are a cheap and efficient solution to the computational expense of full

simulations. Surrogate models (also known as response surface models, metamodels, regression

models, or emulators [6]) create simplified mathematical relationships between inputs and outputs

of a system. The models can then use this relationship to predict the results of a simulation in

response to new input values. These surrogate models make it possible to evaluate many design

variations during DSE or optimization without the prohibitive cost of full simulations [7–12]. Their

convenience and speed when properly trained makes surrogate modeling a valuable part of engi-

neering design. While every surrogate has some degree of error, based on the particular method

and training samples used, generally some amount of bias error is acceptable when conducting

design space exploration early in a design process.

Most surrogate models map a set of inputs to a single output value. These types of surrogate

models will be referred to as single-value (SV) surrogate models. They cannot predict the full

response of an entire system, but instead predict a single value that represents the system (see Fig.

1.1 (top)). Often, the single values are used to summarize the quality of a design, such as the

maximum stress, aerodynamic coefficients, or the weight of the part. By only predicting single

values, the information SV surrogate models provide in an optimization routine is limited [7].

Single values provide little insight into the detailed differences between two complex objects [13],

such as the nodal results between FEA models. While values like the maximum stress and weight
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are important indicators of model quality, a good design is ideally determined by patterns and

relationships between the nodal results across the entire part.

In recent years, methods have been developed for using surrogate models to predict the

behavior of every node in an FEA simulation [14–16]. They generally take geometric parame-

ter values as inputs and predict the complete FEA results for a part. These methods give a much

more detailed and complete prediction of structural FEA results than SV surrogate model methods,

and enable a three-dimensional visualization of the structural results mapped onto the part geom-

etry. These surrogate models can be solved very quickly, allowing the predicted FEA response

to changes in parameter values to be shown in real time, where real time is defined as updated

responses appearing in under a second [14]. While they necessarily rely on more training data than

SV surrogate models (i.e., every node’s results instead of a single result for each training sample),

they also allow detailed full-field predictions.

Because this surrogate modeling method predicts an entire field of responses from an FEA

simulation, these will be referred to as full-field (FF) surrogate models. This work uses the ter-

minology of SV and FF surrogate modeling methods in order to provide a distinction between

these different types of surrogate models. The difference between SV and FF surrogate models is

illustrated in Fig. 1.1: while SV surrogate models only predict a single value, FF surrogate models

predict values for each node on a part.

If industry can confidently adopt the use of FF surrogate modeling methods into these

existing analyses, then these methods can begin to make a larger impact [17]. However, while FF

surrogate models show promise in terms of speed and accuracy [14–16], they have currently only

been used to predict steady stress contours. No studies have been published that test the claims that

FF surrogate models can enhance DSE activities and real engineering analyses. Steady stresses

are important in engineering design, but more complex analyses require fatigue life and modal

data. FF surrogates have not been applied to these types of data and analyses. The benefits of FF

surrogate models in these applications has been mostly speculative. In order to build confidence

in the abilities of FF surrogate models for real engineering design and DSE, they must be tested

in more complex analyses. Their accuracy and abilities compared to SV surrogate models in these

contexts must be explored. In this way, FF surrogate models can be further established as viable

alternatives or additions to SV surrogate models in engineering applications.
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Figure 1.1: (top) Single-value (SV) surrogate models only predict one value that represents the
response of the entire part across the design space. (bottom) Full-field (FF) surrogate models
predict the response of each node on the part across the design space.

The research objective of this thesis is to evaluate the accuracy and benefits of FF

surrogate models when used in real engineering applications and design space exploration.

This general objective is addressed by the following research questions:

RQ1 Can FF surrogate models be used reliably in real engineering and design space exploration

applications?

RQ2 How do FF surrogate models compare with SV surrogate models in these activities, espe-

cially in terms of accuracy and ability?

RQ3 What additional design benefits are gained by using FF surrogate models in the design pro-

cess?

These questions aim to promote confidence among engineers concerning the usefulness of FF

surrogate models for real engineering design, and reveal the associated benefits and shortcomings

of the method.
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1.1 Thesis Organization

The central chapters of this thesis (Chapters 2 - 5) present work that has been submitted for

publication by the author in a variety of academic engineering journals pertaining to FF surrogate

models in real engineering applications. In each, the various methods and examples are demon-

strated with a jet engine compressor blade model (the Purdue blade [18]). Although the methods

are generalized and could apply to any three-dimensional geometry and FEA model, the compres-

sor blade is used throughout for consistency and to take advantage of the expertise of the academic

and industry participants.

Chapter 2 contains a study that expands on previous work by testing the claims that FF

surrogate models enable enhanced interactive DSE experiences and demonstrates visualization

techniques that make DSE with FF surrogate models more efficient. Because the responses of the

entire design are obtained at low cost, it becomes possible to quickly compare different designs

across the design space; however, the cognitive load of making accurate comparisons is high.

A difference model visualization was created that updates dynamically as design parameters are

varied. The study describes the procedure and results for a set of user experiments that test how

human subjects perform when conducting design space exploration activities with and without

this visualization. The results show that the interactive exploration and visualizations enabled

by FF surrogate models do provide enhanced results for some design comparison activities. The

interactive difference model for comparing FEA results is presented as a benefit gained by using

FF surrogate models in the design process. The majority of this chapter has been accepted for

publication in the journal Information Visualization.

Chapter 3 investigates the effect of calculating values based on two distinct sets of FF sur-

rogate model predictions. FF surrogate models are used to predict steady and alternating stresses.

These stresses are mapped onto a Goodman (or Haigh [19]) diagram, a common engineering tool

for predicting the fatigue life and risk of a structural part under cyclical loading [20, 21]. The

predicted stresses are used to calculate various measures of fatigue safety on the Goodman dia-

gram. The accuracy of these values are then compared to those obtained via SV surrogate models.

It is determined that FF surrogate models predict the information with comparable-to-improved

accuracy compared to SV surrogate models, making them valuable in this type of analysis. Var-

ious benefits associated with using the full nodal predictions are explored which allow designers
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to avoid overconservative design and more intuitively understand the interaction between design

parameters and fatigue response. A dynamically updating Goodman diagram is presented for in-

teractive DSE of fatigue life data. The content of this chapter has been submitted for publication

to the Journal of Mechanical Design and is under review as of July 2019.

Chapter 4 investigates cases where a calculation combines all the nodal results of a FF pre-

diction and all the nodal results of an actual simulation. FF surrogate models are used to predict

and compare modal displacements, or mode shapes. The modal assurance criterion (MAC) equa-

tion is the most common method of measuring similarity between two mode shapes from different

designs [10, 22, 23]. The accuracy of the MAC predictions from FF and SV surrogate modeling

methods is studied across different modes and training sample sizes. It is concluded that, when the

data is highly nonlinear across a design space, the FF surrogate models struggle to predict results

with the accuracy of SV surrogate models, and require an extremely high amount of samples. The

considerations and methods associated with using FF surrogate models for modal data are detailed.

If properly trained, various benefits related to flexibility and full visualizations are made uniquely

possible by FF surrogate models. The content of this chapter has been submitted for publication to

the journal of Mechanical Systems and Signal Processing and is under review as of July 2019.

Chapter 5 applies FF surrogate models in optimization routines for more efficient DSE.

Because the FF surrogate models make predictions for each node on a three-dimensional model,

each value in the prediction of a design has some geometric or spatial relationship to the others.

These values enable spatially-defined constraints and objectives that allow a designer to better con-

trol the optimization of the design with respect to the three-dimensional response pattern across

the part. The FF-enabled techniques are described and demonstrated with various examples. This

study illustrates further ways that FF surrogate models can offer enhanced design benefits, espe-

cially in design space exploration and optimization. This content will be submitted to the journal

of Structural and Multidisciplinary Optimization in August 2019.
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Table 1.1: Summary of chapter differences

RQ1: RQ2: RQ3:
Chapter Application vs SV? Benefits Predicted data General characteristics
2: Difference DSE N 3D comparative visualizations Steady stresses 1 set of predicted nodal data
model Interactive DSE for testing DSE enhancements

3: Goodman DSE Y Interactive fatigue DSE Steady stresses Nodal calculations using
Fatigue analysis Less conservative predictions Alt. stresses 2 sets of predicted nodal data

3D fatigue visualization for fatigue analysis

4: MAC DSE Y Flexible modal comparisons Modal Single calculation using
Modal analysis (high cost of training data) displacements 1 set of predicted nodal data

1 set of data from simulation
for modal comparisons

5: Optimization DSE Y Spatially-defined Steady stresses 1 set of predicted nodal data
Optimization optimization for DSE using optimization

Enhanced control
over optimization
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Table 1.1 displays a summary of the differences between the chapters. The Application

column describes which engineering design activities are contained in each chapter in response to

the first research question (RQ1). The third column describes whether or not the chapter attempts

to determine accuracy and capability comparisons with SV surrogate models, in response to the

second research question (RQ2). The Benefits column gives brief descriptions of the benefits

FF surrogate models add to the given engineering application in response to the third research

question (RQ3). The specific kind of nodal data that was predicted in each chapter is listed in

the fifth column. Finally, the sixth column shows a generalized way of describing the differences

between each chapter’s research.

Chapter 6 describes general conclusions from these four studies. These are followed by a

brief description of future work pertaining to this study. Relevant information from the individual

chapters is presented in the appendices.
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CHAPTER 2. DIFFERENCE MODEL

Existing research has demonstrated that FF surrogate modeling is possible, and has alluded

that it can enable enhanced design space exploration and visualization [14]. This enhancement

is based on the premise that as more information is available, better conclusions can be drawn

about the subject [24]. However, a concentrated study on FF surrogate modeling in design space

exploration activities has not previously been published. Also, the ability to explore a design space

at interactive rates presents various challenges to the user. With the complete set of nodal results

available for every design rapidly displayed, the cognitive load of comparing one design to another

in meaningful ways becomes very high.

This chapter contains a study that has been accepted for publication in the journal Infor-

mation Visualization. It describes the basic method of creating FF surrogate models for interactive

design space exploration. It also answers the challenge of making meaningful design comparisons

by applying a difference modeling technique to the three-dimensional FEA result predictions. This

visualization clarifies the differences between two designs. The results of a user experiment are

described that uses the FF surrogate models for an interactive design space exploration of steady

stress contours on a jet engine compressor blade, and measures the effectiveness of using the dif-

ference model visualization for design comparisons. The comparative visualization techniques are

shown to help improve perception speed and accuracy when making various design comparisons

between two designs. This enables more efficient design space exploration as engineers compare

large numbers of complex objects, such as nodal compressor blade predicted by FF surrogate mod-

els in an interactive design space exploration.

While this chapter does not make comparisons with SV surrogate models, it does apply FF

surrogate models to real engineering activities (RQ1) and explore benefits of using FF surrogate

models in the design process (RQ3).
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2.1 Introduction

In engineering, design space exploration is an important process for finding optimal de-

signs [25]. The design space is the collection of all possible design variations. When used with

a parameterized model, the space may be explored by varying input parameters and running sim-

ulations at critical points. Results are then compared to each other with the goal of discovering

the interactions between parameters and outputs [26]. The structural results of a design (strength,

stiffness, etc.) are affected by the geometry, or the values of the design parameters. Engineers

can vary parameters until they achieve a set of parameter values that produces optimal structural

results (e.g., lower stresses, minimize displacement, or shift stress contours to a more desirable

configuration) [1].

Design space exploration involving structural results can be inhibited by the time required

for finite element analysis (FEA) and other analyses to solve. FEA is a simulation method which

approximates the shape of a model with a mesh of points called nodes, applies loads and boundary

conditions to the model, and then solves for results such as structural stress and displacements [4].

This process is meant to simulate how a part will respond to real-world conditions. These results

are produced for each individual node in the model. The speed of FEA is largely dependent on

model complexity [14], and models used in engineering disciplines such as aerospace can have

hundreds of thousands of nodes and anywhere from 5 to 50 parameters [27, 28]. The expense in

time and computer resources can cause designers to consider fewer designs during design space

exploration and limits the ability of simulations to facilitate exploration of design alternatives [26].

Surrogate modeling has recently been applied to this problem and allows designers to

quickly emulate and visualize structural FEA results across a design space [14–16]. Surrogate

models create a relationship between input data and output data. Instead of computationally ex-

pensive simulations, these relationships can predict responses very quickly with low cost [12]. The

surrogate model can be created, or trained, with the design parameters to a FEA model as inputs

and the response, such as the stress, at each node of a FEA model. This allows the surrogate model

to predict the complete stress response of the FEA model for new input parameter values, and indi-

cate the strength of a model without needing to solve new computationally expensive simulations.

These results can be obtained very quickly. With this process, designers may adjust the input

parameters to a model and see the predicted structural results displayed in a three-dimensional
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visualization immediately. Bunnell et al. [14] showed that this method can be applied to large,

complex models such as those used for turbomachinery compressor blade design.

These methods make thorough exploration of the design space for a part much more fea-

sible; however, even with the ability to visualize simulated FEA results in real-time, better tools

are needed to make it easier to visually compare one design to another [26]. With a large number

of possible designs in the design space as well as a vast number of points to compare between

three-dimensional structural results in each design, recalling the myriad differences becomes quite

difficult. When changes between two three-dimensional objects are small or subtle, the human

visual system has limited perception [29]. Designing visualizations to aid the user in making

such comparisons is a challenging, yet important, endeavor for discovery in science and engineer-

ing [30]. This is especially true for comparisons involving spatial three-dimensional data, where

spatial means the data has a meaningful three-dimensional length, width, height, etc.

According to the taxonomy for comparative visualization developed by Gleicher et al. [31,

32] and extended for spatial three-dimensional comparisons by Kim et al. [30], a side-by-side

comparison of results (juxtaposition) is useful and common. Unfortunately, when objects are large

with many points to compare, all the burden is placed upon the user’s memory and limits the ability

to make effective comparisons [30, 31]. One solution is to use an explicit encoding visualization,

such as displaying only the difference between the objects. This type of visualization provides

a much more focused comparison of the objects than juxtaposition alone and is useful when the

focus of the comparison is the relationship between two objects [30, 31]. Difference images and

difference models have been used in many diverse fields for comparison purposes [33–43]. These

visualizations often show the degree and location of differences between two objects or models

and strip away less essential information.

This research applies a type of difference modeling for visualizing the differences between

the structural results of two separate three-dimensional designs. This type of explicit encoding vi-

sualization will hereafter be used interchangeably with the phrase “difference model.” These differ-

ences are visualized to facilitate design comparison, particularly during design space exploration.

The difference between the value of each node on one design and the value of each corresponding

node on another design is computed using a simple node-by-node relationship [32]. The amount of
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change at each node is then displayed on the difference model, allowing the user to easily perceive

even slight differences.

It is expected that, when the difference model is displayed alongside the two designs, com-

bining the juxtaposition and explicit encoding methods of visualization in coordinated multiple

views, shortcomings in each type of visualization will be overcome [30,31]. With these visual ob-

stacles removed and differences clearly displayed, users could more quickly and more accurately

judge how changing design parameters affects a part design.

Although difference modeling and hybrid comparative visualizations are not new, Kim et

al. recently suggested that a valuable branch of research for comparative visualization includes not

only exploration of new visualizations but also user studies that help quantify the advantages of

various types of visualizations [30]. These user studies should include a variety of tasks and should

be used in real data analysis applications.

With these facts in mind, the contributions of this paper are to (1) present an application of

using a hybrid juxtaposition and explicit encoding (a difference model) visualization to facilitate

comparison between different designs in a design space for surrogate-modeled structural results,

and (2) conduct an experiment to help validate the claim that a hybrid visualization, rather than just

a juxtaposition visualization, for this type of application will improve speed and reduce error in

making meaningful comparisons between parts. The experiment tests the hypothesis for a variety

of tasks and information, including search and quantitative estimation, as suggested by Kim et

al. [30]. This research presents these results, which show evidence that the difference model does

improve performance in some types of design tasks, while for others it produces no statistically

significant advantages.

The scope of the application and experiments in this research is limited to showing the dif-

ference between the structural results of three-dimensional compressor blade finite element meshes

emulated by surrogate models, though this method could apply to a wide variety of engineering

part design spaces. The implementation presented uses a reference, or baseline, design as one

of the objects to be compared. Because the experiments in this research used random treatment

assignment (i.e., participants randomly were assigned a certain visualization method to test), sta-

tistical inferences about the causal effect of the difference model may be drawn from the results;

however, because the test subjects were self-selected volunteers (rather than by using random sam-
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pling methods of selection), general inferences about the larger engineering population are beyond

the scope of this research. This study provides useful data that supports conclusions about the ef-

fects of the visualization methods in this study, but further testing is required to make conclusions

about the effect across the population of all engineers.

This paper will proceed as follows: the surrogate modeling method used to create the data

for this research will be briefly covered, followed by an overview of how difference images and

difference models have been used in various fields for error visualization and other purposes. In

Section 3, the specific methods for creating the difference model will be discussed. In Section

4, the experiment design will be explained and results for each task will be presented. Finally,

conclusions are presented that show there is indeed evidence that the difference model improves

speed and accuracy for some comparison tasks and that the difference model can be a useful tool

in engineering design comparison.

2.2 Related Work

This section will give a brief overview of FEA and attempts to predict responses from finite

element analyses with surrogate modeling. This will include a discussion of how surrogate models

are created. Other work that covers different comparative visualization techniques fro complex

objects will also be presented.

2.2.1 Surrogate-modeled FEA

Finite element analysis is a common engineering tool for obtaining the response of a part

to a set of loading conditions, or forces [4]. FEA programs, such as ANSYS, take a two or three

dimensional model of a part and convert it into a mesh of distinct points, or nodes. The program

determines the response to the loads by solving equations at each node of the mesh. These re-

sponses could include values such as the amount of physical displacement or stresses at each node

caused by the loads on the part. The response values are assigned a color and mapped onto the

model’s geometry to create colored contours representing the response across the entire part (see

the example in Figure 2.1).
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Figure 2.1: An example of FEA results on a compressor blade shape

Surrogate modeling uses training data to create a relationship between inputs and outputs

to a system. The resultant relationship can then be used to predict the system’s response to a

new set of input values in a fraction of the time it takes to solve the original system [6, 12]. In

recent years, surrogate models have been used to emulate the stress and displacement response of

each node in a finite element mesh [14–16]. A variety of designs are created by using a design of

experiments (DOE) to find a set of designs that adequately fill the design space. For a model with

n input parameters, each design is represented by an n-dimensional vector [26]. Once the designs

are generated, FEA is performed for each design.

The input parameter values for each design constitute the inputs to the surrogate models,

and the FEA result values constitute the outputs. The surrogate models are used to model the

relationship between these and can then take in new parameter values to predict the response across

the part. These predicted results are assigned a color value based on the chosen color scale and

mapped onto a reconstructed visualization of the finite element mesh. This process allows a user

to change the parameters of a model and obtain visualized results up to 96% more quickly than

waiting for the full FEA process [14], allowing a user to conduct rapid design space exploration

with instant structural feedback. Being able to quickly visualize alternate designs in a design space

without the need to set up many independent models and wait for simulations to solve enables

faster and more creative exploration.
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2.2.2 Comparative Visualization

Gleicher et al. developed various classifications of visualization techniques for facilitating

comparison [31]. These classifications have been used and expanded by others [30, 44], but the

basic categories have proven useful:

• Juxtaposition: a side-by-side comparison of two objects

• Superposition: two or more objects shown in the same space (also called ”Overlay”)

• Explicit encoding: computes a relationship between objects and represents the relationship,

not the original models, in space

Each has inherent strengths and weaknesses. Juxtaposition shows each object in its entirety

but places the burden of comparison on the user’s memory and perception as they look back and

forth between objects. This may be helped by linked camera views, etc. [30, 44]. Superposition

locates the parts together in space but suffers from occlusion. Explicit encoding directly shows a

desired relationship, such as the differences, which makes the user’s task quite easy, but results are

decontextualized from the original objects [30, 31].

When framing a comparative visualization problem, one must consider various challenges,

as described by Gleicher in a later study [32]:

1. Number of items to compare

2. The size/complexity of the objects to be compared

3. The size/complexity of the relationships

The most common form of comparison is between two different objects; comparison of three or

more can be incredibly difficult. Objects being compared can be large with many simple small dif-

ferences, small with very complicated differences, or any combination of these. Specifically, when

an object has only small, subtle differences, the challenge for the user to perceive and correctly un-

derstand these differences is greater. Finally, the relationships between the objects may be simple

or complex. Simple relationships include those where objects to be compared have corresponding

elements that may be checked element-by-element [32]. When dealing with comparisons between
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two three-dimensional shapes, the challenge of determining relationships becomes much more

difficult if there are no clear correspondences between points on one object to the other [32, 45].

Research has suggested that hybrid methods are advantageous when comparing displays of

three-dimensional data [30]. These can include coordinated multiple views or tightly integrated

combinations of various methods. These combinations help combine strengths and overcome

weaknesses. When combining juxtaposition and explicit encoding, the explicit encoding makes

the relationship between the juxtaposed views clear, and the juxtaposed views provide context for

the explicit encoding [31].

2.2.3 Comparative Visualization in Scientific Studies

There are many examples of how explicit encodings (or difference models and difference

images) assist researchers to make scientific comparisons in many fields. In biological studies,

these methods have been used to indicate increasing or decreasing accuracy of plant reflectance

models [36], exposing toxic leaf chemicals [39], automatically detect cells in the root of a plant

[41], and illustrating concentrations of ethanol vapor on a sensor [40]. In medical fields, difference

imaging can identify possible breast cancer in patients by taking two images of a patient in different

positions and comparing them [38]. In computer vision, a type of difference imaging is used for

motion detection by examining pixel differences between two consecutive frame images in a video

sequence [42] or calculating the magnitude and direction of change with optical flow vectors [43].

A type of comparative visualization common to scientific fields is error visualization. This

involves calculating the difference between an approximation and a ground truth in order to deter-

mine the error between the models. Explicit encodings may be used to map error values directly

onto a three-dimensional geometry, and allow a user to gain quick intuition about the reliability of

the model with respect to its geometric location and features.

A specific example of the use of difference modeling with three-dimensional models is the

program Metro. Here, a geometric mesh is loaded and then simplified for faster computation [46].

The differences in position between each node of the simplified mesh and of the original mesh are

computed, creating an error value for every node on the mesh. For example, a simplified mesh

that closely resembles the original mesh will have low error at all nodes. These error values are

represented with a hue and then displayed on the surface of the simplified mesh to indicate the
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distance between where the node is and where it should be. This allows the viewer to see, at a

glance, where the simplified mesh geometry differs from the original and the degree of difference.

The result is visually similar to the stress contours found in typical FEA results, but the colors

represent varying degrees of signed error instead of stress. Using this visualization, engineers may

more easily make judgments about the quality of the simplified mesh.

Similarly, in a 2010 study concerning ocean floor mapping, models of varying fidelity

were created and then compared. The distance between each surface location on two different

models could be represented as a signed error (positive or negative height differences), which was

then converted to a range of colors and displayed on the geometry. This allowed the researchers

to determine whether the lower density meshes were reliable enough to use for further research

purposes.

Finally, a combination of juxtaposition and explicit encoding has been used in some com-

putational fluid dynamics (CFD) analyses to show the error between different models of a specific

flow scenario (e.g., a high vs a low resolution model) [34, 35]. The researcher may compare the

two models in their full representations via juxtaposition and then use the difference model, shown

to the side of the juxtaposed models, to clearly understand which locations have the most change

in accuracy.

While these examples do not use difference modeling in the context of design space ex-

ploration or structural results on three-dimensional models, they do illustrate how using explicit

encodings can help expose otherwise hidden results in a study. These studies use visualizations,

but do not attempt to analyze the visualization choices used. This research aims to not only apply

these methods to a unique type of aerospace analysis, but also examine the comparative visualiza-

tion benefits gained from the chosen visualizations.

2.3 Method

In this section, a method for applying a hybrid visualization to nodal results and the details

of its implementation is described.
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2.3.1 Visualization Considerations

This research uses a combination of juxtaposition and explicit encoding. The juxtaposition

represents the simplest way to compare two objects: side by side, with little to no extra insight to

relationships between the two objects. The explicit encoding directly computes and conveys the

differences between the two objects as positive or negative. This method is ideal for representing

whether stresses at specific locations have increased or decreased for different designs in a design

space due to changes in the parameters. By including both the juxtaposition and explicit encoding,

the visualization presents the original models to the engineer for examination, clearly shows the

differences, and does not suffer from decontextualization.

To address the challenges of comparative visualization set forth by Gleicher [32], it was de-

termined that, for this application, only two designs need be compared at a time. The entire design

space could be summarized by statistical methods, but insight into the significance of differences

is gained from looking at the full individual models [47]. The focus here is on direct structural

comparison, and looking at two sets of results at a time is sufficient.

In regards to object and relationship complexity, the three-dimensional objects being com-

pared may be quite large (each finite element model may be made up of thousands to hundreds

of thousands of nodes) and the parts of the objects being compared (the results at each node) are

comparatively very small. This increases the difficulty for the user to perceive such small areas

of change. However, Gleicher noted that when the relationships between parts are simple, such as

checking a set of data in an element-by-element fashion, the challenges are reduced [32].

Each different design in the design space is composed of different geometric parameter

values, so pairs of objects being compared in this application will have different shapes. Because of

this, it becomes harder to find ways to directly relate one point to another between the two objects

[45]. For this purpose, this application makes use of mesh morphing during the data generation

phase. Mesh morphing adjusts the nodes in an existing finite element mesh to a new shape, rather

than create a new mesh [48]. As the geometry changes, the relative positions and numbering of the

nodes in the finite element mesh are preserved. Thus, a consistent number and relative positioning

of nodes exists for each design in the design space, and any two designs have an exact set of

corresponding nodes and results to be compared. Thus, the relationships between nodal values on

the objects are simple as per Gleicher’s definition.
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2.3.2 Basic Setup

The juxtaposed views consist of two renderings of designs in the design space and their

structural results. When displayed, they look like the output of a FEA simulation. The camera

views are linked so that both designs are always in the same orientation. This has been done to

help the viewer make direct comparisons between both visualizations [30, 44].

The difference model, or explicit encoding visualization, is made by calculating the nodal

differences between two designs. The calculated nodal differences are assigned a color based on

the magnitude of the difference. This visualization maps these colors onto a third geometry. This

produces a separate, three-dimensional representation of the geometry that, instead of displaying

the results of a single design, shows the differences between the results of two designs. For the

purposes of this study, the geometry used for this rendering is the geometry of the first object to

be compared. Though this does not make the results entirely independent of the first object [31], it

does provide a clearer, more meaningful representation of the data than applying it to some other

geometry outside the comparison. The juxtaposed views are required for analysis of the geometric

differences, while the explicit encoding shows the mapped result differences.

The difference model uses the results for each node in the compared designs to calculate

difference values. These results could be stresses, displacements, temperatures, or any set of nodal

values across a mesh. In this paper, the displayed results will be von Mises stresses [49], which

are useful for determining problematic stress locations. Because each design in the design space

is built from the same parametric finite element mesh, there exists a result value for each node

in every possible design. Thus, no matter which two designs are compared, there also exists a

difference value for every node in the mesh.

To render these difference values to the difference model geometry, they must be assigned

a color that aids the designer in perceiving the changes that have occurred. The signs of these

differences can be determined by calculating whether results at each node on the second design

being compared have increased or decreased in relation to the first design. For example, the result

values that have increased from the first to the second design can be represented with varying

degrees of warm colors, e.g. orange and red. Values that have decreased can use varying degrees

of cool colors, e.g. teal and blue. Values that have not significantly changed can be colored a

neutral color, such as white. The threshold for significance can be chosen by the user. An example

19



www.manaraa.com

> +10.0%

+10.0%

+5.0%

+1.0%

-5.0%

-10.0%

< -10.0%

-1.0%

Figure 2.2: The difference model’s color scale and the difference model

of these colors is shown in Figure 2.2. The result is a “double-ended” color scale which indicates

whether results have increased or decreased by varying degrees, with warm and cool colors at the

extremes and colors tending from bold to neutral as the differences decrease in magnitude.

The difference model communicates the differences between the two designs more pre-

cisely and more completely than a direct visual comparison of the designs [30, 31]. From observ-

ing the two original designs alone, many subtle—yet significant—differences are still difficult to

perceive or mentally judge. The difference model can highlight exactly how much each node has

changed, where changes have occurred, and quickly provide the designer with a visual map of how

design changes affect the structural results between the two designs.

2.3.3 Implementation Details

In this implementation, a simple parametric geometry similar to a turbomachinery com-

pressor blade design is used. The geometry used in this study will be referred to as a “blade” for
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simplicity. It is controlled by three parameters: the height, the chord at the root, and the chord at

the tip. The root refers to the base and the tip refers to the top face. The leading edge faces the

direction of motion, and the trailing edge faces away. The chord refers to the distance from the

trailing edge to the leading edge. Unless otherwise specified, the trailing edge will be located on

the right hand side of all figures in this paper, and the tip will be oriented towards the top of the

figures. Each of these three parameters have a baseline value of 3.0 in (7.62 cm) and can vary by

10% (0.3 in) in either direction, creating a range of 2.7 in to 3.3 in (6.86 cm to 8.38 cm). The

design space is three-dimensional, with each axis representing a different parameter between the

values of 2.7 and 3.3.

This geometry and the associated nodal stress responses were obtained by creating surro-

gate models using the process outlined by Bunnell et al. [14]. A design of experiments was used

to obtain a set of designs that would suitably fill the design space. In ANSYS, these designs were

given loading conditions of a fixed constraint of the root face and a load on the tip’s edge. These

were solved for each design, and the results for each node were used to train radial basis surrogate

models.

At this point, the three parameters’ values may be changed by the user, and the new nodal

stresses are calculated by the surrogate models fast enough for the visualization to update without

the user noticing any delay. Because the surrogate models were trained to respond to parameter

values from 2.7 to 3.3, parameter values outside this range are not guaranteed to produce accurate

results.
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Figure 2.3: From left to right: the shared stress color scale, the new design, the nominal design,
the difference model, and the difference model color scale.
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The first design to be compared is the nominal case; that is, the solution when all three input

parameters are set to the baseline value of 3.0 and is fixed. Hereafter, this will be referred to as the

“nominal design.” The second design is any new solution, obtained by giving the surrogate models

a new set of input parameter values and rendering the new stresses for the model. Hereafter, this

will be referred to as a “new design.” The nominal design’s stresses remain constant, but the new

design’s stresses update as users input new parameter values. This allows any new design to be

compared to the nominal design.

A graphical user interface (GUI) was created to facilitate design comparison and consists of

a rendering of the new, the nominal, and the difference models simultaneously on the screen using

OpenGL canvases. All models use linked camera views for convenient comparison. Controls are

provided for changing the values of the various parameters.

When mapping data values (such as results from an FEA process) to color values, one of

the most fundamental choices is what color scale should be used [50–52]. This choice has great

impact on all interpretations made about the visualized data. If each design uses its own color scale,

mapped to the maximum and minimum value of that particular design, determining differences and

comparing patterns between the two designs becomes problematic since the color mappings are not

directly comparable [51]. Rather, because this research is focused on visualizing designs from an

entire design space, a shared color scale is used based upon the maximum and minimum stress

values that occur in the entire design space; that is, out of all possible designs in the design space,

the maximum stress and the minimum stress that occur are used to create the range of possible

stresses in the design space.

Figure 2.3 shows the canvases and color scales from the GUI. Even though the shared color

scale helps make direct comparison between the two designs possible, it can still be difficult to

discern the location and magnitude of differences between the two designs. Both designs have a

large area of nodes with stress values that fall in the dark-blue range (0 to 20833 psi), but it is not

clear whether or not the stresses have changed within this region, or by how much. It is entirely

possible that a node’s stress may have changed from one design to the next but remains in the same

color range as before.

The difference model clarifies these changes. The third OpenGL canvas in the GUI is used

to display the same geometry as the other two canvases, but here the primary data displayed are
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the differences between the two designs. These differences are calculated using the stress values

between each node of the two designs.

The difference calculations could be done in many ways, depending on the application.

The simplest method is by a straight comparison, or the absolute difference (stress of Node X in

the new design - stress of Node X in the nominal design), with the greatest increase in stress shown

as a dark red coloring and the greatest decrease in stress as a dark blue. However, because every

pair of designs compared will have variations in how different their nodal stresses are, this method

exhibits the same pitfalls as local color scales do in the previous discussion.

This research shows the percent differences between nodes rather than the absolute differ-

ences. The percent difference method uses the shared scale for the design space that was previ-

ously determined. Once the amount a node has changed from one design to the next, or absolute

difference, has been calculated, it is determined what percentage of the shared scale that change

comprises. This can be described by Equation 2.1:

∆σx =
σx,new−σx,nominal

σrange
∗100% (2.1)

where σx,new and σx,nominal refer to the stress at the same specific Node X in both the first

and the second designs, and σrange refers to

σrange = max[d1,d2, ...dn]−max[d1,d2, ...dn] (2.2)

with [d1,d2, ...dn] being the stresses at every design in the design space. This range encap-

sulates the highest and lowest stresses possible across the entire design space. For the purposes of

this research, this was estimated by taking the highest and lowest stresses present in the training

data for the surrogate models.

For example, if a particular node were to increase by 12,500 psi from the first to the second

design, and the shared scale has a range of 0 to 125,000 psi, then this particular node’s difference

makes up 10% of the shared scale. An increase of 10% will be colored dark red, while a decrease

of 10% will be colored dark blue. For the purposes of this study, any changes between -1% and

1% were chosen to be insignificant and thus are colored neutral white. The values of -1% and

1% are arbitrary and may be adjusted based on the needs of the analysis. This neutral range, as
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well as any of the ranges in the color scale, may be adjusted according to the needs of the user.

Differences between 1% and 10% are colored in hues that exist between the neutral and extreme

colors, depending on if they are increasing or decreasing.

The color scales used in this study were designed to reflect traditional FEA color schemes.

These colors, however, were not necessarily designed for people with color-deficient visual im-

pairments [53]. The color schemes could be adjusted in future work to meet these requirements.

Figure 2.3 shows that the new design produces the greatest changes in the bottom right

corner, with moderate changes in the center, and small changes along the trailing edge, tip, leading

edge, and most of the root. There are also two small areas of moderate change visible near the

bottom left corner. No significant change has occurred along the edge of the tip. Some of these

details could possibly be inferred from a direct visual comparison of the two designs but now are

presented clearly with far less effort and uncertainty.

2.4 User Experiments

An experiment was designed and conducted to validate the claims that adding an explicit

encoding of the differences to juxtaposed views of structural results can improve a designer’s

speed and accuracy when performing certain design comparison tasks. Tasks include comparing

general and specific changes, examining groups of elements and single elements on the objects,

and responding to specific and more open-ended questions. Speed and accuracy are measured for

each type of task.

A request for volunteers was sent via an email from the Brigham Young University De-

partment of Mechanical Engineering to students in the mechanical engineering program - thus, the

volunteers used in this study were all undergraduate or graduate mechanical engineering students.

Volunteers were randomly assigned to one of two different groups: one group had access to the

difference model, and the other group did not. Each group had 14 participants, for a total of 28

participants. The volunteers had no prior knowledge that there were two treatment groups.

The volunteers were self-selected, instead of randomly chosen, therefore this study cannot

lead to statistical population inferences about the general population of engineers. However, be-

cause the treatment groups were assigned randomly to all volunteers, statistical causal inferences

about the effect of using the difference model on user performance may confidently be made in
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this study. That is, while this experiment’s design does not allow for conclusions to be drawn about

groups of engineers beyond those tested, it does allow conclusions regarding the influence of the

difference model on performance.

2.4.1 Experimental Setup

Each volunteer was given the same introduction to the test. The test administrator reviewed

basic concepts of stress analysis, airfoil parameters, and design space exploration with each vol-

unteer. Those in the group without the difference model had only the new and nominal models

(juxtaposed views) rendered in the GUI. For those in the group with the difference model, the con-

cept of the difference model and associated color scale were also explained, and the GUI in their

program included the difference model rendering with its associated color scale (hybrid views, see

Figure 2.4).
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Figure 2.4: The User Test GUIs, with (top) and without (bottom) the difference model. From left
to right: parameter value displays, stress color scale, sliders to control the parameter values, the
new design, nominal design, and, for those with the difference model, the difference model and
difference model color scale.
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All participants were given the ability to input different values for the new model’s param-

eter values. For tasks requiring precise inputs, values could be entered into text boxes, while for

tasks requiring more exploration of the design space, slider bars could be adjusted. They had full

ability to zoom, rotate, and translate the parts, as well as the ability to save different “views” or

camera orientations of their own choosing for convenience as they looked at key areas of the blade.

The engine blade used in the study was the same simple parametric test blade described in

the Methods section. For simplicity, the participants were not told what the parameter names were,

but were given the pseudonyms Parameter A, Parameter B, and Parameter C. The questions were

administered and the answers collected via Google Forms. Screen activity was captured visually

with oCam software. The participants were given four tasks in order to assess the effect of using

the difference model visualization. The order and the research objective of each task are detailed

below:

1. Task A: An introductory task to familiarize participants with the test environment and con-

trols. No data was collected during this phase.

2. Task B: A series of comparisons are presented to the participants along with three questions.

The questions were designed to evaluate how the difference model enhances perception of

specific kinds of differences between the designs:

(a) Q1: Evaluates perception of general level of difference across the entire part

(b) Q2: Evaluates perception of general level of difference across a specific area or feature

of the part

(c) Q3: Evaluates perception of a specific value difference for a specific location on the

part

3. Task C: Participants are asked to creatively find new designs that differ from the nominal

design according to specific criteria. This task was designed to evaluate how the difference

model enhances not only perception but also creative design exploration.
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2.4.2 Task A

This task familiarized the user with the program by asking them to enter new design points

and prompting the user to try to notice changes in the two design points being displayed (the new

design and a static nominal design). No data was gathered in this phase. The purpose was to help

users with the learning curve associated with the program and served as a tutorial. While it did

not introduce the user to every type of task they would be asked to perform, this introductory task

helped them understand how to navigate and make sense of the program.

2.4.3 Task B

In Task B, participants were asked to answer three questions about each of eight different

designs, one at a time. The objective was to analyze the accuracy and time spent on each set of

questions. These times were measured from when each question was presented to the participant

to the moment they clicked the button to proceed to the next question.

For each of the eight designs, the participant was asked to answer the following set of

questions:

1. Question 1 (Q1): ”Using your best judgment, about what percentage of the surface of the

NEW blade has INCREASED in stress?”

2. Question 2 (Q2): “Using your best judgment, about what percentage of the surface on/close

to the TRAILING EDGE of the NEW blade has DECREASED in stress?”

3. Question 3 (Q3): “The max stress on the NOMINAL blade is 44724 psi. Is the max stress of

the NEW blade greater than the max stress of the NOMINAL blade by 40,000 psi or more?”

For Q1 and Q2, multiple choice answers were provided, and for Q3 the user could answer “yes”

or “no.”

Task B Setup

Preliminary testing revealed that the users spent much longer on the first few designs as

they learned how to perform the requested tasks. After three question sets, the times and accuracy
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became more consistent. Over the entire group of participants, the average of the first three ques-

tion set times was 165 seconds, while the average of the remaining question sets was 85 seconds.

This time discrepancy could be explained by users continuing their familiarization of the interface

from Task A or taking some initial time to understand the problem. Consequently, it was decided

that the initial three designs presented to the user should not be measured so as to not bias the

data. In order to have five measured designs, then, eight total designs presented to the user: three

unmeasured sets to accommodate a learning curve (Designs 1-3) followed by five measured sets

(Designs 4-8).

The design values for question sets 4-6 were given by a random number generator, pro-

ducing values from 2.7 to 3.3 for all three parameters in each design. The answers and designs

for these questions were not known to the testers beforehand, so they represent a better test of the

program features (as they could not be contrived to favor the difference model in any way).

The last two designs (7-8) were identical for every participant. This allows for direct com-

parison of speed and accuracy on the last two designs.

Task B Hypotheses

Since Q1 relies on perceiving increases in stress, it was hypothesized that using a hybrid

visualization with the difference model would reduce the time spent on the question as well as

reduce the error. It was designed to test perception of changes across an entire part.

Q2 had a similar hypothesis to Q1: that using a hybrid visualization with the difference

model would reduce the time spent on the question as well as reduce the error. However, this

question was designed to test perception of changes on a specific feature or area of a part.

Q3 deals with determining stress value changes between the two designs for a specific

location. Because the difference model visualized percent differences without providing any addi-

tional information in the context of the actual stress values, it was hypothesized that using a hybrid

visualization with the difference model would not improve the time spent on the question or the

accuracy of answers over just the juxtaposed views. It was designed to test a comparative task

involving specific values for a very small location on the objects being compared.
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Task B Evaluation Method

In OpenGL, the surface of the model is broken into triangular faces. Each corner of the

triangle has a specified RGB color, and the color across the face is a gradient between these corner

colors. Thus each corner is “responsible” for coloring 1
3 of the surface. Using this relationship, it

was determined that, if a node was increasing or decreasing, it would produce a change on 1
3 of the

faces associated with that node.

For Q1, the nodes that were increasing or decreasing were identified, and then the surface

area each node was associated with was totaled. This was used to produce the actual percentage

of the blade that was increasing or decreasing. Because users selected a multiple choice answer,

the actual values were rounded to the closest available choice presented to the users during the

experiment, and the error between the two was calculated as |response− actual| = error. For

example, if the actual percentage of the surface increasing in stress was 33.46%, and the answer

given was 20%, then 33.46% would be rounded to 30% (also an available choice), and the user’s

error would be 10%.

For Q2, all the nodes on the trailing edge were identified (see the black region in Figure

2.5). Using a similar method to Q1, the percentage of the surface area of the trailing edge was

calculated. Again, the actual value was rounded to the closest available choice presented to the

users during the experiment, and the error between the two was calculated in the same way as in

Q1.

Figure 2.5: Trailing edge nodes discussed in Task B Q2 shown here in black
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For Q3, the location of the max stress was found on the new and nominal models. It was

then determined if the difference between the two was above 40,000 psi. Answers were given as

“yes” or “no,” so each answer received a score of 1 if correct, and 0 if incorrect. Thus, instead of

average error of responses, this question measures the average accuracy of correct responses.

For each question, the time was measured in seconds from the moment the task was dis-

played to when the user clicked the “Next” button to progress to the next question. The time for

each question as well as the total time spent on the question set were measured.

Since data was only gathered for the last five designs, this means that there were 15 speed

values and 15 accuracy values per participant in Task B. With 28 participants, this produced 840

data points.
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Figure 2.6: Speeds and errors for Q1, Q2, and Q3 for each design in Task B. Each error bar is
constructed using 1 standard error from the mean.

Task B Q1 Results

The speed and error for Q1 was calculated for the last five designs for each participant.

Table 2.1 presents the mean values for each treatment group. Figure 2.6 shows a comparison of

these values for each design presented to the participants.
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Those using the difference model performed the task about 14 s faster than those not using

the difference model (30.23 s vs. 43.73 s), and the average error from the correct answer was only

7.23%, about 16% lower than those without the difference model. By running standard two-sample

t-tests, evidence was found that both differences were significant (p-values < 0.05). Thus, there

is evidence that the null hypothesis can be rejected for both the speed and error, which suggests

a correlation between using the difference model in a hybrid visualization and reduced time and

reduced error for Q1. This statistical evidence supports the hypothesis for Q1.

Table 2.1: Task B Q1 Results

TREATMENT AVG. SPEED AVG. ERROR

DIFFERENCE 30.23 s 7.23%
NORMAL 43.73 s 23.71%
p-value 0.0014 0.0001

For reference, on Design 7, those using the difference model had 26.5% lower error, at

about 7 s faster, on average (with only error being statistically significant). On Design 8, those

using the difference model had 12% lower error, at about 11 s faster, on average (with only error

being statistically significant).

Task B Q2 Results

The speed and error for Q2 was calculated for the last five designs for each participant.

Table 2.2 shows the mean of these values for each treatment group. Figure 2.6 shows a comparison

of these values for each design presented to the participants.

Those using the difference model answered the question about 5 s faster than those without

the difference model (19.98 s vs. 25.49 s), and the average error from the correct answer was only

5.71%, about 12% lower than those without the difference model. Two-sample t-tests revealed that

both speed and error, when used with the difference model, were significantly different (p-values <

0.05) than those without the difference model. Thus, there is evidence that the null hypothesis may

be rejected for both the speed and error, which suggests a correlation between using the difference

model in a hybrid visualization and reduced time and reduced error for Q2. This statistical evidence

supports the hypothesis for Q2.
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A possible limitation of the data from Q2 is that there was ambiguity of what counted as the

“trailing edge” in the question statement. While there was a fixed area used in evaluating the error,

the participants had a less specific definition of the area given to them. Participants could have had

different understandings about which nodes pertained to the trailing edge and which pertained to

the blade faces and may have included more area than intended in their estimation of the trailing

edge. This could affect how long participants spent on this question, as well as how accurate their

answers were.

Table 2.2: Task B Q2 Results

TREATMENT AVG. SPEED AVG. ERROR

DIFFERENCE 19.98 s 5.71%
NORMAL 25.49 s 17.57%
p-value 0.0146 0.0001

For reference, on Design 7, those using the difference model had 15.7% lower error, at

about 2 s slower, on average (with only the error being statistically significant). On design 8,

those using the difference model had 4% higher error, at about 3 s faster, on average (neither being

statistically significant).

It should be noted that while some designs could produce abnormal results (see Figure 2.6

for Design 7, Q2 Speed, and Design 8, Q2 Error), most of the values follow a predictable trend.

The error at Design 8 is near 0.00 for those using the difference model, and is 0.00 for those without

the difference model because it was easy to tell that Design 8 did not decrease anywhere, thus both

groups did quite well at making a correct judgment.

Task B Q3 Results

The speed and error for Q3 was calculated for the last five designs for each participant.

Table 2.3 shows the mean of these values for each treatment group. Figure 2.6 shows a comparison

of these values for each design presented to the participants.

Those using the difference model performed the task 2.5 s slower on average than those

without the difference model (24.49 s vs. 22.09 s), and the average correct responses given was

about 2% lower. The two-sample t-tests revealed that there is no evidence that the differences are
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statistically significant (p-values > 0.05), thus the null hypothesis may not be rejected, which does

not suggest a correlation between using the difference model and the error and time spent on Q3.

This task had little to do with making comparisons between designs, so this statistical evidence

supports the hypothesis for Q3 that using the difference model in a hybrid visualization would not

improve the results for this question.

The high degree of overlap in the standard error bars for Q3 in Figure 2.6 reflect the findings

that there was little difference between the values for those with the difference model and those

without.

Table 2.3: Task B Q3 Results

TREATMENT AVG. SPEED AVG. ACCURACY

DIFFERENCE 24.49 s 88.57%
NORMAL 22.09 s 91.43%
p-value 0.5722 0.5764

For reference, on Design 7, those using the difference model had 29% lower accuracy, at

about 2 s slower, on average (with accuracy being statistically significant). On Design 8, those

using the difference model had 7% lower error, at about 1 s faster, on average (neither being

statistically significant).

2.4.4 Task C

In Task C, participants were asked to find three separate new designs (combinations of

parameter values) that produced at least one location that decreases 10% (10,000 psi) and, concur-

rently, at least one location that increases at least 10% (10,000 psi) from the nominal design. The

purpose was to have the participants use the tools to find designs on their own that met specific

conditions.

Task C Hypothesis

It was hypothesized that those using the difference model in a hybrid visualization would

spend less time on the task and recommend more designs on average that successfully fulfilled
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both conditions. This task was designed to test a more open-ended comparative question involving

interactive design space exploration as well as perception of trends in change across an entire part.

Task C Evaluation Method

The three different designs recommended by the participants were entered into the program.

In the program, a simple function identified if there were any nodes on the new model that had

increased or decreased 10% from the nominal model. If there were at least one increasing and one

decreasing node that met the conditions, that design was given a score of 1. If it did not meet both

conditions, then it received a score of 0. For each participant, the scores were averaged together,

e.g., if two of the three designs were correct, the average score would be 0.66.

The time was measured in seconds from the moment the task was displayed to when the

user clicked the “Done” button. The responses were measured for speed of the overall task and

accuracy.

Task C Results

Table 2.4 shows the average correct designs provided in Task C for each treatment group.

Those using the difference model performed the speed on average 91 s faster than those without the

difference model (303.62 s vs. 395.00 s), and provided 31% more designs that met both conditions.

The two-sample t-tests showed little evidence of there being a statistically significant difference for

the speeds (p-value > 0.05), but showed more convincing evidence that the average correct answers

given were significant (p-value < 0.05). Thus, there is little evidence that the null hypothesis

may be rejected in regards to the speed, which does not suggest a correlation between using the

difference model in a hybrid visualization and reduced speeds for Task C. However, there is more

convincing evidence that the null hypothesis may be rejected for the average correct answers given,

which does suggest a correlation between using the difference model in a hybrid visualization and

higher average correct answers. This statistical evidence supports the hypothesis for Task C in

regards to accuracy but not for speed.
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Table 2.4: Task C Results

TREATMENT AVG. SPEED AVG. CORRECT

DIFFERENCE 303.62 s 97.64%
NORMAL 395.00 s 66.79%
p-value 0.1410 0.0001

2.5 Discussion

Overall, the results of the experiments show that, for many types of design activities, there

is evidence that the difference model does improve the speed and accuracy of users’ abilities to

perceive differences between the structural results of two different FEA models. However, the

type and purpose of the comparison that a user is making affects how much including the difference

model in the visualization will assist the user in their efforts.

The results of Task B Q1 suggest that the difference model can improve the speed and

accuracy with which a user can assess the general level of difference across an entire part. For

comparison tasks where general differences are important, visualizations with a difference model

can help users accomplish the task faster and with greater success than visualizations without a

difference model (e.g., “Is the new design generally higher or lower than the original design?”, “Is

more than half of the new design higher (or lower) than the original design?” or ”How much of

the new design has higher (or lower) values than the original design?”).

The results of Task B Q2 similarly suggest that the difference model can improve the speed

and accuracy with which a user can assess the general level of difference on a specific area or

feature of a part. Visualizations with a difference model can help users make comparisons about

differences across an area of a part more quickly and with greater success than visualizations

without a difference model (e.g., “Does the top edge of the new design generally have higher or

lower values than the original design?”, ”Is more than half of the front face of the new design

higher (or lower) than the front face of the original design?”).

Confirming the hypotheses for Task B Q1 and Q2 suggests that, for future visualization

designs when comparing two intricate designs or objects, like these three-dimensional compressor

blades, a difference model will help the users perceive not only the general trends between the two

objects, but also the trends over specific areas. Users can estimate the type of changes and the level

of change with greater success and speed.
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The results of Task B Q3 differ from the previous two by suggesting that the difference

model does not improve the speed or accuracy of the user’s responses when making comparisons

that involve specific values at specific locations on the two designs. This was an expected result;

it was included in this study in order to confirm the limitations of the difference model in aiding

perception. For tasks where users compare specific values instead of trends across the part or areas

of the part (e.g., “Which locations of the new design have a value higher than X?”, or “What is the

lowest value between these two designs?), there is no evidence that the difference model improve

the users’ performance. While the difference model will likely not negatively impact the speed

and accuracy of the users’ perception, it is not worth the cost of adding a difference model to a

visualization if these types of comparisons are the only ones being made with the tool.

Finally, the results of Task C suggest that, when a user is asked to creatively explore a

design space and find designs that satisfy certain comparison-based criteria, the difference model

helps improve the success but not the speed with which users can accomplish the task. These

types of tasks are more open-ended than the previous comparison tasks in that they there are many

possible answers that will satisfy the question. The open-ended nature of this activity shows that

the difference model helps users in both directed and creative comparison tasks. This is more in line

with the objectives of design space exploration (e.g., “Find a design that generally has higher or

lower values than the original design.” or “Find a design where at least half of the front face is lower

than the original design”). To take advantage of the benefits of the difference model in creative

design space exploration, the types of objectives should be similar to the types of comparisons

examined in Task B Q1 and Q2. While users may not necessarily complete these tasks faster with

the difference model, they will have an easier time in correctly identifying target designs.

2.6 Conclusions

This research presented a method for enhancing design comparison in a design space for

three-dimensional designs with structural results. This method allows the difference in the nodal

results to be calculated and shown to the user with an explicit encoding visualization, which clar-

ifies the location and magnitude of differences between the two designs. When combined in a

hybrid visualization with a juxtaposition of the two designs being compared, the context of the

difference relationships is preserved and allows the user to make better use of the information.
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This was illustrated by comparing the stress responses of turbomachinery compressor blades to

different geometric parameter inputs. Stresses that increase from the first to the second design are

colored in warm colors, while stresses that decrease are colored in cool colors.

The difference model gives users a way to perceive the differences between the structural

results of two designs more quickly than by simple visual inspection of the two designs. It also

allows users to understand the magnitude of the differences with greater accuracy than making

mental calculations between the two juxtaposed views of the designs. The user can thus understand

key aspects of a design comparison more quickly and more accurately, enabling more effective

design space exploration.

An experiment was designed to validate the claims that using a difference model combined

with juxtaposed views of the designs would improve speed and accuracy for certain design com-

parison tasks. This study helps provide justification for useful visualizations in future applications

of surrogate modeling of three-dimensional structural results for design space exploration

Based on the experiments’ results, there is evidence that including the difference model

allows a user to perform tasks such as detecting changes across the entire part more quickly and

more accurately. Including the difference model also helps users detect changes on a specific

feature or area more accurately and more quickly. Finally, there is evidence that including the

difference model can help a user suggest designs that meet specifications in an open-ended de-

sign comparison task more accurately than without the difference model, but not necessarily more

quickly.

When tasks focus on a specific value rather than a decontextualized relationship (or dif-

ference), then the experiments did not yield evidence that the hybrid visualization produces ad-

vantages in speed and accuracy. This is because the difference model is designed to show the

difference between two designs’ values rather than the actual values at that point, and thus gives

no advantage in this activity.

Further research and experimentation should be done to determine how users utilize the dif-

ference model to perform tasks. More focused tests could be done with industry experts (instead of

student volunteers) to see how the tool helps with more concrete design tasks that are performed in

a professional setting. Further research should also be done in how user perception is affected by

displaying result values other than stresses on a part, such as using the difference model to display
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differences in displacement, temperature, or vibration. While the principles ought to remain the

same for any type of results, perhaps other useful adaptions could be developed to enhance per-

ception in specific applications. Useful future studies could determine how the usefulness of these

methods change as the geometry of the comparison objects becomes more complex.
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CHAPTER 3. GOODMAN

In jet engine design, fatigue life is an important consideration. Fatigue life analyses involve

the results of both structural and modal analyses. Because these simulations are expensive, they are

difficult to incorporate into rapid and thorough design space exploration. Therefore, this chapter

predicts both steady and alternating stresses with FF surrogate models for a jet engine compressor

blade in answer to RQ1. These results are then mapped onto a Goodman diagram for analysis,

and used to predict the fatigue risk of the part. This Goodman diagram is similar to those used in

industry, except that it can dynamically update as design parameters are changed.

The study fulfills RQ2 by comparing the results on the Goodman diagram with those pre-

dicted by SV surrogate models. First, the accuracies are compared, and it is found that FF surro-

gate models predict the values with a greater degree of accuracy. Then, the various design benefits

(RQ3) of predicting nodal responses are described. These include the ability to make judgements

with more detailed information, mapping results from the Goodman diagram onto actual three-

dimensional geometry, and the ability to make less conservative predictions. With the interactive

speeds of the FF surrogate models, the results of the Goodman diagram can be used in real-time

design space exploration.

This study of FF surrogate models differs from the other chapters by using the results

from two separate FF surrogate models, each predicting a different kind of data i.e., instead of

just using FF surrogate models of the steady stresses, here FF surrogate models of the steady and

alternating stresses are used together. These two predictions are used in a calculation to achieve a

new predicted result at every node. This combination and calculation of new nodal results is not

uncommon, and must be tested in order to confidently recommend FF surrogate models for this

type of engineering activity. The comparison between FF and SV surrogate models is done based

on the predictions of a maximum stress value. Although FF surrogate models can predict much
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more information, this maximum calculated value provides a good point of comparison for the two

surrogate models.

This study has been submitted for publication to the Journal of Mechanical Design and is

under review as of July 2019.

3.1 Introduction

In aerospace design, parts often fail due to fatigue from cyclical loadings [20,54]. Failures

related to vibration account for approximately 60% of aero-engine failures, making the ability

to accurately and easily predict failure due to fatigue an essential part of the jet engine design

process [1]. As aerospace products become more complex, there is an increasing need for more

detailed predictions of risk and failure at earlier design stages [55–57]. If this risk can be addressed

earlier, time and money that would otherwise be spent on redesign activities can be avoided.

Fatigue life analyses and the prior analyses they depend on can be computationally expen-

sive, which can affect early design practices. Conducting a fatigue life analysis requires results

from both structural and modal analyses [1]. For this reason, fatigue life analysis must be con-

sidered after these analyses have already been performed. The costs for obtaining highly detailed

results in these analyses can cause limits in speed and quality for iterative processes in early design

space exploration. To compensate, often fewer iterations are explored or lower fidelity models are

used [14]. The level of effort to adjust and properly set up these simulations and analyses often

also makes them less useful tools for free exploration of design variations in real time [26].

The Goodman diagram (otherwise known as a Haigh diagram [19]) is a common tool used

for predicting the fatigue life of a structural part under cyclical loading [20, 21]. An example of

a Goodman diagram is show in Fig. 3.1. The diagram consists of a material limit line (usually

the modified-Goodman line) and plotted points determined by the steady and alternating stresses

on the part [20]. A point’s location relative to the material limit line provides an indication of the

expected fatigue life of the part [58–60] Many different measures exist for quantifying the risk of

fatigue failure of a part based on a point’s proximity to the material limit line. Some of these will

be explained in Section 3.2.2, including a specific value called the percent Goodman (%G).

There are various methods for representing a part on the Goodman diagram. Commonly,

the entire part is represented with a single point. In the authors’ experience, one conservative
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Figure 3.1: A single point (3.1a) and multiple points (3.1b) on a typical Goodman diagram

method involves plotting a point using the maximum steady stress and maximum alternating stress

of the part (Fig. 3.1a). This produces a conservative estimate of the part’s fatigue life. Conservative

methods such as this have been sufficient in the past; however, as performance requirements be-

come more demanding, more complete understanding of the exact blade response is necessary [2].

A more detailed method for representing a part uses a collection of steady and alternating stress

values from different locations on the part (Fig. 3.1b). This provides a more complete understand-

ing of the fatigue response of the entire part, but also requires a greater knowledge of the part and

more computational resources [61–65].

To overcome the high computation time needed for expensive simulations, many aerospace

designers employ surrogate models to quickly predict needed information [7, 8, 66]. Surrogate

models (also known as response surface models, metamodels, regression models, or emulators [6])

create simplified mathematical relationships between inputs and outputs of a system. Using new

inputs, the surrogate models can then predict results in a fraction of the time it takes to perform

the original calculations [6]. In the design process, properly trained surrogate models provide fast,

reliable, and computationally cheap predictions of certain values. These are often used in design

space exploration or optimization routines in order to quickly determine the best initial designs

without the prohibitive cost of full simulations [7–9].
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Most surrogate models have been limited to mapping a set of inputs to a single output

value [7]. These types of surrogate models will be referred to as single-value (SV) surrogate

models. SV surrogate models have been used to predict many values used in fatigue analysis and

Goodman diagrams, such as the maximum stress on a part or the stress at a specific location of

interest on a finite element model [7, 67]. These SV surrogate models make it possible to quickly

update a single point on a Goodman diagram and make general fatigue life assessments without

expensive simulations. However, because these surrogate models are only used to predict a single-

value, they cannot give a more detailed prediction of the steady stresses and alternating stresses of

a part [7] or their full representation on a Goodman diagram.

In recent years, methods for using surrogate models to quickly predict the behavior of every

node in a FEA simulation have been developed [14–16]. They generally take geometric or loading

parameter values as inputs and predict FEA results for the entire part. Results can be predicted in

real time, i.e., under a second for updates to appear [14]. These results can be used to dynamically

update three-dimensional visualizations of the nodal results mapped onto the part geometry as

input parameters are varied. Thus it becomes possible to predict much more detailed structural

FEA results than with SV surrogate model methods. Because this use of surrogate models predicts

an entire field of responses from a FEA simulation, these will be referred to as full-field (FF)

surrogate models.

This research uses FF surrogate models to predict the results of structural and modal FEA

results for compressor blades in a jet engine. For demonstration purposes, the transonic Purdue

blade will be used [18]. In addition to being able to predict and visualize geometric changes and

stress responses on the part, these FF surrogate models provide real-time updates of information

that can be used to plot each node’s location on a Goodman diagram. Thus, this research will

present a new dynamically updated Goodman diagram that shows a highly detailed fatigue re-

sponse to changes in geometric inputs for a given compressor blade. This dynamic Goodman

diagram will be discussed in the context of early stage design exploration. By obtaining the results

in real-time, this Goodman diagram can replace otherwise expensive simulations and avoid the

associated time-delay impacts on the design process.

The use of FF surrogate models to update every node’s location on the Goodman diagram

will be compared to using a SV surrogate model to update a single conservative point on the
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Goodman diagram at the maximum stress location. Specifically, the accuracy with which each type

of surrogate model predicts the %G values will be examined with reference to a full FEA solution.

It is suggested that using every node’s results on the Goodman diagram to evaluate the fatigue life

of a part (instead of using a single point at a maximum stress location) reduces conservatism and

makes it easier to find better designs.

With the accuracy of the FF surrogate method established for predicting %G values, a

number of design benefits are presented for design exploration and fatigue analysis. Using the

FF surrogate models allows designers to quickly predict and gain intuition about fatigue analysis

results, including %G values and other Goodman-based measures. The predicted results can be

used to create visualized results, such as a dynamic Goodman diagram that updates in response

to parameter changes in real time. Extending previous FF-enabled visualizations, the %G values

for each node may be mapped onto the three-dimensional visualization of the part. Because the

information is mapped directly onto three-dimensional geometry, the visualization can be used to

indicate actual locations of potential fatigue failure. The speed at which information is available to

the designer leads to faster intuition development. New result predictions and visualization updates

occur in direct response to parameter changes, making the relationship between the design changes

and the fatigue analysis results easier to perceive. Finally, this method makes it possible for more

detailed fatigue analysis results of new designs to be presented simultaneously with structural and

modal analysis results without the need for expensive simulations and delays.

The main contributions of this paper are the use of FF surrogate models to predict steady

and alternating stresses (and therefore calculate the %G values), a study on the accuracy of these FF

surrogate models as compared to the accuracy of SV surrogate models, and the presentation of the

associated design benefits with this method. The interaction between the changing inputs and the

dynamically-updated visualizations in real time provides a key improvement over static methods.

In addition, this work introduces the terminology of SV and FF surrogate model methods in order

to provide a distinction between these different uses of surrogate models.
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3.2 Previous Work

3.2.1 Surrogate Models of FEA Results

Finite element analysis is a common engineering tool for obtaining the structural response

of a part to a set of boundary conditions. FEA programs, such as ANSYS, take a two or three

dimensional model of a part and convert it into a finite element mesh made up of many intercon-

nected nodes. The program determines the response to the loads by solving equations at each node

of the mesh. These responses could include values such as the amount of physical displacement or

stresses caused by the loads on the part.

SV surrogate models have been used to predict specific values obtained from FEA results,

such as the maximum stress of a part, the average displacement of a part, or the response of a

specific “monitor” node at some location of interest [7, 67]. The inputs to such a surrogate model

could be geometric parameter values or loading parameters used in the FEA simulation. Instead

of running a new simulation each time a design change is made, a properly trained SV surrogate

model can provide the desired output value very quickly without expensive calculations. These

types of surrogate models have been used to predict results in many parts of a jet engine, from the

compressor and turbine blade vibrations to aerodynamic coefficients experienced in various nozzle

types [8, 11, 66, 67]. It has been noted that when these single values results have a relationship to

other points on a part, they can be more difficult to accurately predict with SV surrogate models [7].

In recent years, FF surrogate models have been used to predict the stress and displacement

response of each node in a FEA model [14–16]. Both Heap et al. and Bunnell et al. were able

to approach “real-time” design exploration of finite element models by representing the nodes of

the model with surrogate models. Bunnell et al. used a unique surrogate for every node’s stress, x

location, y location, and z location in order to predict the stress and geometric response to changes

in geometry. Both Schulz et al. and Bunnell et al. were able to predict the results for an entire

three-dimensional finite element model.

To properly train FF surrogate models, it is necessary to first create a set of training data.

To do this, a variety of designs are created by using a design of experiments (DOE) to find a

set of designs that adequately fill the design space. For a model with n input parameters, each

design instance is represented by an n-dimensional vector [26]. Once the designs in the DOE
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are identified, FEA is performed for each design and the nodal results are collected. The input

parameters for the designs and the FEA results are the training data used to train the surrogate

models: the input parameter values for each design constitute the inputs to the surrogate models,

and the nodal FEA result values constitute the outputs. There exists one unique surrogate model

for every node. The surrogate models are trained on these inputs and outputs, and develop a

mathematical function to describe the relationship between them. Once trained, the surrogate

models can then take in new parameter values to predict the full nodal response of the part.

This process allows a designer to change the parameters of a model and obtain visualized

results. The prediction and visualization occurs more quickly than waiting for the full FEA process

[14]. The speed of this method is dependent on the type of analysis performed and the complexity

of the model, with node count and the number of input parameters playing a significant role in

training and solving time. Under the right conditions, the time for calculating and visualizing these

results is under a second, which may be considered as a real-time update [14]. With near-instant

structural results, a designer can conduct more complete design space exploration and quickly

visualize variations of the design without running independent simulations for every new model.

3.2.2 The Goodman Diagram

The Goodman diagram uses steady and alternating stress values to help determine the fa-

tigue life of a part. These stress values determine the position of points on the diagram. The steady,

or mean, stress of the part is plotted with respect to the independent axis, and the alternating, or

vibratory, stress is plotted with respect to the dependent axis (see Fig. 3.1) [68]. A material limit

is represented on the diagram by the modified-Goodman line, typically drawn from the ultimate

strength (Sut , on the independent axis) to the endurance strength (Se, on the dependent axis) [60].

A point’s location relative to the modified-Goodman line provides an indication of the expected

fatigue life of the part. The equations and processes for creating a Goodman diagram are well

documented in the literature [20, 49, 60].

Acceptable designs are those points in the region bounded by the modified-Goodman line

and the max alternating stress of the part [59]. Designs that fall into this region are expected to

have infinite life (generally 107 cycles or greater) [58–60, 68]. Points that fall above this line are

determined to be at risk of failing in fatigue [60].
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The Goodman diagram has been used for fatigue analysis in a wide variety of applications,

including jet engines [19–21, 54, 64, 68, 69], subway frames [61, 62], coronary stents [63, 65],

and repair of underground copper cables [70] or aging railroad bridges [60]. The points on the

diagram may be obtained from finite element analysis [61–63, 65], physical testing [21, 59, 71], or

a combination of these.

The steady and alternating stresses may be obtained from measured test values or from

structural and modal FEA simulations. Generally, the mean structural centripetal stresses in ro-

tating components of a jet engine may be calculated with relative certainty because they are

closely related to the rotational speeds of the engine, which are relatively straightforward to mea-

sure [19,59,72]. The alternating stresses, however, tend to be more difficult to accurately calculate

because they depend on the vibratory characteristics of the engine, which are more varied and

difficult to measure [19].

In design, modal analysis is performed to obtain mode shapes and natural frequencies of

the component [68,73]. An estimate of the mode’s stresses may then be obtained from these mode

shapes [67, 68]. Because modal analysis results are based on solving a finite element eigenvalue

problem, the mode shapes are unscaled. Often, finite element solvers will scale the mode shapes

(and the resultant mode stresses) either to unit magnitude or normalize them by the mass. In

practice, the mode’s stresses are often preliminarily scaled based on previous design analyses,

where the maximum value is set to a known max alternating stress, independent of the mean

stress [20, 59].

In absence of a known max alternating stress, then an assumed max alternating stress may

be used. A designer may choose a value for the max alternating stress based on experience, ex-

perimental results, or by determining what additional stress would cause failure when added to the

already present steady stress [19, 20, 59].

Many efforts have been made over the last 20 years to reevaluate and improve the use of

Goodman diagrams. Some studies [20, 59, 68] have acknowledged that the Goodman diagram

neglects certain aspects of design, such as prestress or the effect of damage during operation

on fatigue life, and adjustments that address these concerns have been made. Others have at-

tempted to display the information on a Goodman diagram in ways that better convey information

to the designer, such as using three-dimensional Goodman diagrams or non-linear material failure

46



www.manaraa.com

lines [20, 59, 68, 74]. A common observation is that, when using certain assumptions or presen-

tation methods, the Goodman diagram may produce results that are overconservative or obscure

important design considerations [59,75]. Some researchers have found that certain assumptions or

methods, such as using minimal material capabilities or neglecting the difference between prestress

and mean stress, can lead to overconservative results on the Goodman diagram.

Methods of Evaluation

Rather than evaluating fatigue life solely based on which side of the modified-Goodman

line a point is located, it may be important to have a quantitative measure of how close a point is

to the line. For this reason, there are a variety of methods for evaluating the proximity of a point

to the modified-Goodman line. These values quantify the amount of risk for a given point.

Factor of Safety: Like in many engineering applications, using a factor of safety in the

Goodman diagram is a useful way to embed security against physical flaws or unforeseen events

into the design. Common examples of the factor of safety in the Goodman diagram include using

a fixed fraction of the steady and alternating stress [20], a fixed value of alternating stress [20], or

some fraction of the distance of a point to the Goodman line [20, 59, 63, 70, 75].

Generally, the factor of safety is determined along the load line (drawn from the origin to

the Goodman line through the point), given by Eqn. 3.1 [75], where n is the factor of safety, σa is

the alternating stress, and σs is the mean stress. This effectively applies the factor of safety to both

the steady and the alternating stresses.

1
n
=

σa

Se
+

σs

Sut
(3.1)

This value may also be given by a ratio along the load line, or Eqn. 3.2 [70], where AB is

the distance from the origin to the point, and AC is the distance from the origin to the Goodman

line through the point. This is illustrated in Fig. 3.2.

1
n
=

AC
AB

(3.2)

In some situations, when one of the types of stress (steady or alternating) is more certain

than the other, the factor of safety can be applied only to the uncertain term [59]. Because predic-
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tions of the mean stress in a jet engine are fairly certain while alternating stresses are not, a factor

of safety can be applied to the alternating stress only. Thus a vertical factor of safety may be used

in some cases [20], using Eqn. 3.3. This can be illustrated in Fig. 3.2 (see also Fig. 2 in [59]).

1
n
=

ED
EB

(3.3)

Percent Goodman: The percent Goodman is another way to measure the vertical distance

of a point to the modified-Goodman line, and is calculated by Eqn. 3.4, where %G is the percent

Goodman value. It is actually the inverse of the vertical factor of safety (Eqn. 3.3), as seen in

Fig. 3.2. It describes the ratio of a point’s alternating stress over the value of the Goodman line at

the steady stress of that point. In other words, the percent Goodman calculates the height of the

point as a percentage of the Goodman line for a specific steady stress value.

%G = (
1
n
)−1 =

EB
ED

(3.4)

This type of inverse factor of safety is helpful when reporting the risk of a part in reference

to the Goodman diagram. Rather than a factor of safety, it provides a percentage, where values

greater than 1 are above the Goodman line and at risk of fatigue failure [49, 63]. This helps

facilitate easier comparisons of values during design space exploration. For this reason it will

be the chosen method of evaluation for this research. %G < 100% indicates a point within the

modified-Goodman line, %G = 100% indicates a point directly on the modified-Goodman line,

and %G > 100% indicates a point over the modified-Goodman line.

Methods of Part Representation

As stated previously, the Goodman diagram can be used to represent a part with a single

point or many points. A common single-point method is to evaluate the Goodman diagram using

Eqn. 3.5, where σs,max is the max mean stress and σa,max is the max alternating stress. An example

of this value is shown in Fig. 3.3 with a grey square. Any %G values obtained by using both the

max alternating and max steady stress (from Eqn. 3.5) are hereafter referred to as %Gmax.
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Figure 3.2: Methods of evaluating a point’s proximity to the modified-Goodman line. The point
(B) is at about 55% for the percent Goodman (Eqn. 3.4) and about 90% for an inverse diagonal
factor of safety

%Gmax =
σa,max

Se− ( Se
Sult

)σs,max
(3.5)

When stress data from many different locations on a part are available, this collection of

points may be represented on a Goodman diagram together [61–65]. This method has been used

with the factor of safety method described in Eqn. 3.2 for each node in an FEA model [63,65]. The

values obtained give an indication of the risk of fatigue failure at different nodal locations across

the model [61,62,65]. Representing every node’s location on the Goodman diagram has been used

in a wide range of applications, including FEA models of compressor blades [64].

By representing each node’s position on a Goodman diagram, the percent Goodman may

then be evaluated for every point on the diagram using Eqn. 3.6, where σs,nodal is a node’s mean

stress and σa,nodal is a node’s alternating stress. Using Eqn. 3.6 for every point gives the designer

a more complete understanding of how the whole part will respond in regards to fatigue life. The

%G value for any node in this collection will be referred to as a %Gnodal value.
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Figure 3.3: The %Gmax,nodal and the %Gmax shown on a Goodman diagram. The %Gmax,nodal is
lower than the %Gmax in this example.

%Gnodal =
σa,nodal

Se− ( Se
Sult

)σs,nodal
(3.6)

A value of interest in this set of %Gnodal values is the maximum %G value. This will

mark the node (and location) on the part that is at most risk of failing in fatigue. It is found using

Eqn. 3.7. Every node’s percent Goodman value will be calculated and represented on the Goodman

diagram, but this highest value provides a less conservative summary value for the risk of a part

than the %Gmax, and will be referred to as %Gmax,nodal . The presentation of the %Gmax,nodal is

compared to the %Gmax value in Fig. 3.3.

%Gmax,nodal = max(
σa,nodal

Se− ( Se
Sult

)σs,nodal
) (3.7)

Both the %Gmax and %Gnodal values give %G values on the Goodman diagram, but are

obtained using different data and have different merits. Because the %Gmax is calculated using the

maximum possible stress values, it is the most conservative estimate of the fatigue life. In some

cases, this may be preferred, but it also may result in overdesign [69]. While safety is paramount
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in aerospace designs, even slight excesses in weight and cost have significant ramifications for

companies. The %Gmax,nodal provides a less conservative estimate of the fatigue life. This value

tends to be lower than the %Gmax, indicating that the %Gmax usually predicts a part is closer to

being at risk of failing in fatigue than it really is. This can lead to design compensations that may

be unnecessary or rejection of designs that are actually safe. Beyond providing the %Gmax,nodal

value, using the full collection of %Gnodal values can display the complete “shape” of the part’s

data on the Goodman diagram, which may reveal further insights to the true fatigue life of the part.

While calculating the %Gmax,nodal requires more detailed knowledge of the part’s stress responses,

using %Gnodal values also enable further benefits during the design process, as noted in Section

3.6. In contrast, the %Gmax can only provide a single representative value.

3.2.3 Rendering Goodman Diagram Values onto Three-dimensional Geometry

Mapping values from the Goodman diagram onto three-dimensional part geometry has

been used in many applications. Certain failure evaluation values from a Goodman diagram were

used to map risk of failure to different locations of wheel trucks in railroad FEA models [61, 62].

Several studies have analyzed the strength of coronary stents by displaying the position of every

node’s stress reaction on a Goodman diagram, and using a factor of safety evaluation for each point

[63, 65]. One study then mapped these factor of safety values directly onto the three-dimensional

geometry [63]. Day et al. did a similar mapping for the Goodman factor of safety onto every node

in a FEA compressor blade model [64]. These visualizations helped to indicate locations that could

be modified so the part would have a more desirable fatigue response.

These visualizations are useful, but require computationally expensive analyses. When

modifications and design changes are made to the model, new analyses must be performed in order

to acquire the information needed to update the visualization. Previous studies have not employed

surrogate models for these nodal results and geometry-based visualization, and thus have been tied

to these expensive simulations.
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3.3 Method

This section will discuss the manner in which surrogate models can be trained to predict

steady and alternating stress values. The results of these surrogate model predictions can then

be plotted on a dynamic Goodman diagram. These points are then used to calculate %G values.

The various calculations are presented, followed by the workflow for creating the surrogate models.

The accuracy of FF and SV surrogate models with regards to the calculated %G results is presented

in the following section.

3.3.1 Surrogate Models

As seen previously, the %Gmax depends on the max steady stress and a max alternating

stress. In the absence of a known value for the max alternating stress, a value may be assumed

(see Section 3.2.2). The %Gmax value may be calculated using a SV surrogate model that predicts

the maximum steady stress, hereafter referred to as a SV %Gmax value (Eqn. 3.8). The SV %Gmax

calculation depends only on the SV predicted maximum steady stress (σs,max(SV )).

SV %Gmax =
σa,max

Se− ( Se
Sult

)σs,max(SV )

(3.8)

A set of FF surrogate models may also be used to predict the maximum steady stress of

a specific design. This is found by choosing the maximum value in the set of predicted nodal

steady stress values (σs,max(FF)). Like the SV %Gmax value, the max stress as predicted by the FF

surrogate models may also be used to calculate the %Gmax. This will hereafter be referred to as the

FF %Gmax value (Eqn. 3.9).

FF%Gmax =
σa,max

Se− ( Se
Sult

)σs,max(FF)

(3.9)

On the other hand, the %Gnodal depends on the nodal steady stress results and the nodal

alternating stress results (scaled from zero to the chosen max alternating stress) for an entire part.

While a SV surrogate model cannot produce sufficient information for this calculation, the FF

surrogate models can predict both the steady and the alternating stress results. The %Gnodal values

may be calculated using one set of FF surrogate models for the steady stress and another set of
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FF surrogate models for the alternating stress (Eqn. 3.10), creating a FF %Gnodal value for every

node. The maximum %G value obtained with the FF surrogate model predictions will hereafter be

referred to as the FF %Gmax,nodal value (Eqn. 3.11).

FF%Gnodal =
σa,FFem

Se− ( Se
Sult

)σs,FFem
(3.10)

FF%Gmax,nodal = max(
σa,FFem

Se− ( Se
Sult

)σs,FFem
) (3.11)

Depending on the kind of %G calculation the designer would like to use, a SV surrogate

model can be used to predict the maximum steady stress or a FF surrogate model set can be used

to predict the steady and alternating stresses for each node. These values are plotted as points on

a dynamic Goodman diagram. One of the %G calculations discussed in this section can then be

used to evaluate the points created by the surrogate model predictions.

3.3.2 Workflow

This research uses much of the same basic workflow as described by Bunnell et al. for

training FF surrogate models [14]. The interested reader is referred to [14] for more complete

details; however, the process is briefly presented here to help in understanding the details of this

research. This method expands on the previous method by adding modal analyses and creating

surrogate models to predict alternating stresses instead of only steady stresses.

Surrogate models require a training set of data that includes inputs and associated outputs.

This training set may be constructed using a design of experiments (DOE) with n dimensions,

where n is the number of desired input parameters. Each collection of parameter values constitutes

a unique design instance. The suggested number of designs in the DOE can depend on criteria

such as computational resources, complexity of the models, and number of dimensions.

The parameter values in each design instance constitute the inputs for a training point in the

training set of data. These values are used to update the geometry of a parametric model. Rather

than create a new finite element mesh for every new design, a mesh-morphing process is applied

to the baseline design’s mesh. This allows all the designs in the training set to have a common
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set of relative node numbers and locations between all designs [14]. The mesh for each design is

used in both a static and a modal FEA simulation. The results (steady stress, alternating stress, and

geometric information for each node) are saved as the output for the training point. If geometric

information is desired, either the deformed or undeformed geometry could be predicted.

This training data is then used to train the surrogate models. Two separate surrogate model

sets are created. A steady stress FF surrogate model set is trained using the design parameters as

inputs and steady stress for every node in each design as the outputs. Similarly, an alternating stress

FF surrogate model set is trained using the design parameters as inputs and the alternating stress

for every node in each design as the outputs. If a three-dimensional prediction of the shape of the

part is desired, three additional FF surrogate model sets may be trained to predict, respectively, the

X, Y, and Z coordinates of each node in response to the parameter changes. If only a SV surrogate

model is to be used, a max stress SV surrogate model may be trained using the design parameters

as inputs and only the maximum steady stress in each design as the output.

Once the surrogate models are trained, the surrogate models can accept a set of parameter

values as a design instance and return predicted results. In this way, for a particular design, the

steady stress and alternating stress are predicted with the FF surrogate model sets for every node.

The alternating stresses are then scaled against a chosen max alternating stress.

These results can be used to dynamically update a Goodman diagram. Using the steady

and alternating stress values from the FF surrogate models, each node is plotted as a point on the

Goodman diagram. Equation 3.10 uses these predicted results to calculate the %Gnodal value for

every node. The %G values can be assigned colors indicating proximity to the modified-Goodman

line, where, for example, blue is 0% and red is 100%. In a similar manner, a SV prediction of the

max steady stress can be used to plot a point at the max alternating stress and max steady stress

location. This point may be used with Equation 3.8 to calculate the SV %Gmax value.

Additionally, if the FF surrogate models are also trained to predict the X, Y, and Z locations,

a three-dimensional visualization of the part geometry may be created. As in [14], the steady stress

results for each node may be mapped to this geometry. This is also true for the alternating stress

values. When the %G values have been calculated using Eqn. 3.10, then these also could be

mapped onto the geometry. While these values are all indicated on the dynamic Goodman diagram
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visualization, mapping these values to the geometry clearly shows the geometric location of the

values and their patterns across the part.

When there are a large number of nodes, generating these visualizations can be more com-

putationally expensive than the actual prediction of the results. In these cases, the time it takes

to generate the visualization can be improved by visualizing only a representative portion of the

nodal results, such as rendering only a random sample of the nodes on the Goodman diagram or

only the surface nodes on the three-dimensional model.

3.4 Accuracy Comparison

The purpose of this accuracy study is to establish the relative accuracy of using FF surrogate

models to calculate the %G values used in this method. The proposed design benefits of this

research come from the prediction and use of the %Gnodal values. To build trust in the FF surrogate

models, some idea of their accuracy must be determined.

Both SV and FF surrogate models are used in this study for comparison purposes. Because

the SV surrogate model can only predict a single point, a SV surrogate model cannot be used to

predict and or visualize nodal results for an entire part. Instead, some single %G value must be used

to compare the FF and SV surrogate models, and Goodman diagrams will be used to help illustrate

the relationships. There is no way to directly compare the FF %Gnodal values, which depend on

both steady and alternating stresses, to a SV surrogate model because the SV surrogate model

cannot predict a large collection of nodes. However, since the maximum stress can be predicted

with both the SV and FF surrogate models, this study will focus on the comparison between the

SV %Gmax and the FF %Gmax, which depends only on the max stress.

These two values are both found by predicting a max steady stress, and are calculated in the

same way, making them good objects of comparison. Their only difference is that the SV %Gmax

employs a single SV surrogate model that predicts the max steady stress, while the FF %Gmax

uses a FF surrogate model set to predict the steady stress results for every node on the model,

and then uses the maximum value in the %Gmax calculation. Though not directly applicable to a

visualization, the %Gmax is a good representation of a common single summary value for indicating

an entire part’s fatigue risk. By establishing the accuracy of the FF surrogate models for the %Gmax,
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some degree of confidence can then be given to justifying the use of the FF surrogate models and

FF %Gnodal results.

The error of a surrogate model refers to its ability to accurately predict the kind of data with

which it was trained. In this research, the surrogate models predict the results of a structural and a

modal FEA simulation. The surrogate models may be adjusted to more accurately represent a FEA

simulation, and a FEA simulation may be adjusted to more accurately represent reality. While

using more accurate FEA simulations is ideal, the objective of this research focuses on validation

of surrogate model accuracy, not validation of a finite element model [12]. Thus, the accuracy of

the surrogate models is evaluated by comparing the surrogate models’ results and the FEA results.

Using FEA results of validation samples as a way to evaluate accuracy of values predicted by

surrogate models is consistent with previous work [10, 11, 76]. ANSYS 17.0 was the FEA solver

used in this research.

3.4.1 Model

This test will use a FEA model of a jet engine compressor blade. The FEA model is based

on the transonic Purdue blade [18]. The Purdue blade was developed for research purposes and is

a general representation of a compressor blade. It has been parameterized to use the parameters

and bounds in Tab. 3.1. The model consists of various airfoil profiles, or airfoil shapes, with

connecting surfaces. It has been parameterized with the five parameters and bounds in Tab. 3.1.

These parameters change the geometry of the model by adjusting the profiles at the root and tip

of the blade. The Angle parameter adjusts the difference in the angle between the profile at the

root and the profile at the tip. The two Chord parameters adjust the chord length at the root and at

the tip. The Lean parameter offsets the tip profile in a direction perpendicular to the root profile’s

chord, while the Sweep parameter offsets the tip profile in the same direction as the root profile’s

chord. This parameterization and associated controls are discussed in [14].

This application of the Purdue blade is a “blade-alone” model, omitting the fillet around

the bottom of a real compressor blade where it would connect to a disk or dovetail base. When

using a “blade-alone” model in structural FEA, an artificial stress concentrator can develop around

the base where the boundary conditions are set. The bottom 4 elements of the blade model have

been neglected in order to remove artificial high stresses at the base.
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Table 3.1: Parameter bounds

Parameter Lower Bound Upper Bound
Angle -20 deg 20 deg
Chord@Root 20.32 mm (0.8 in) 30.48 mm (1.2 in)
Chord@Tip 20.32 mm (0.8 in) 30.48 mm (1.2 in)
Lean -7.62 mm (-0.3 in) 7.62 mm (0.3 in)
Sweep -7.62 mm (-0.3 in) 7.62 mm (0.3 in)

A mesh convergence study was performed in order to find the point where increasing the

node count did not significantly alter the structural results. However, because the objective in this

study was to calculate and visualize results in real time, a node count of 250,000 nodes was chosen

as a good balance between model accuracy and model complexity, which affects the calculation

and visualization speeds. While the most converged mesh was not used, the mesh convergence

study helped to identify a much more converged mesh to use in these examples and fulfill the com-

peting objectives of speed and accuracy. While using 250,000 nodes does slow the visualization

performance slightly, the updates still occur in under one second.

3.4.2 Data and Assumptions

In order to create and then test the surrogate models, two data sets were created for both the

SV and FF surrogate models: a training data set and a test data set. These will be briefly described

in this section.

Training Data

In Section 3.3.2, it was stated that a training set of design parameters (inputs) and FEA

results (outputs) must be generated to train the surrogate models. Preliminary studies showed that,

with five parameters, 500 different points would be sufficient to sample the design space. An

optimized Latin Hypercube was chosen for a DOE because it is a space-filling design [12, 77],

and was used to generate 500 different combinations of the five parameters. A single set of these

parameter values defines a unique design. Each of these designs were used to update the parametric

compressor blade model. This updated model was used to conduct a structural and a modal analysis
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in ANSYS, and nodal data was extracted for each design. This training data was used to create

surrogate models to predict the behavior of each node.

For both SV surrogate models and FF surrogate model sets, radial basis functions (RBF)

were used. While other functions could be used to build the surrogate models, the authors chose

to use RBFs based on previous research and experience [14].

Test Data

In order to test the accuracy of the surrogate models, a new set of designs must be created.

The surrogate models are more accurate when predicting results in response to inputs that are near

the designs in the training set, so using the training set as test designs would unfairly represent

the surrogate model accuracy across the design space. A new DOE and set of data was created

with 500 different designs using the same process as before. These designs are distinct from those

designs in the training set, but still evenly sample the design space for testing purposes.

In order to test the accuracy of the surrogate models, a separate set of designs must be

created. The surrogate models tend to be more accurate when predicting information that is close

to information used in the training data set [12]. If the surrogate models are used to predict the

same designs used in the training data set, the results may appear artificially accurate. Thus the

test designs must be distinct from those designs in the training data set [67, 77]. The objective is

to find points for comparing the response of the surrogate models to the actual data across the full

span of the design space.

A new DOE and data set were created with 500 different designs using the same process as

before. The %G values and max stress values for each design in this data set were found. Because

they were calculated with data from ANSYS, and were not predicted directly or calculated from

predicted data, they will be referred to as ANSYS values (ANSYS %G and ANSYS σs,max). These

ANSYS %G and ANSYS σs,max values formed a test data set, and were used for validation against

values predicted by the surrogate models [10, 76].
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Assumptions

Additionally, to create the Goodman diagram, certain properties were calculated or chosen.

The blade is assumed to be made of Titanium 6Al-4V [1]. The ultimate strength for this material is

1182108.7 kPa (170000 psi), and the endurance strength was calculated to be 317158.8 kPa (46000

psi) using Marin factors [49]. This makes the assumptions that the blade has been machined and the

operating temperature in the compressor is around 638.9 K (1150 R). This temperature is assumed

to roughly simulate an intermediate compressor stage between the inlet and the combustor. This

ultimate strength and endurance strength are within the ranges used by other studies on this material

[20]. The maximum alternating stress was assumed to be 82737.1 kPa (12000 psi), which is in an

acceptable range for alternating stresses for compressor blades.

3.4.3 Test Procedure

The following process was used for each design in the test data set:

1. Using the ANSYS data for each design in the test data set:

(a) Obtain the max stress (ANSYS σs,max)

(b) Using the ANSYS σs,max, calculate the ANSYS %Gmax

(c) Using the steady and alternating stresses at each node, calculate ANSYS %Gmax,nodal

2. Using the FF surrogate model sets:

(a) Predict the steady stresses

i. Find the max steady stress (FF σs,max) in the set of predicted steady stresses

(b) Predict the alternating stresses

i. Scale the predicted alternating stress values from 0 to a max alternating stress

(c) Using the FF σs,max, calculate the FF %Gmax value

(d) Using the steady and alternating stress values at each node, calculate the FF %Gnodal

values

i. Find FF %Gmax,nodal value in the set of predicted FF %Gnodal values
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(e) Calculate the error between:

i. the FF σs,max and the ANSYS σs,max values

ii. the FF %Gmax and the ANSYS %Gmax values

iii. the FF %Gmax,nodal and the ANSYS %Gmax,nodal values

(f) Plot all data points on the dynamic Goodman diagram

3. Using the SV surrogate models:

(a) Predict the max steady stress (SV σs,max)

(b) Using the SV σs,max, calculate the SV %Gmax value

(c) Calculate the error between:

i. the SV σs,max and the ANSYS σs,max values

ii. the SV %Gmax and the ANSYS %Gmax values

(d) Plot the data point on the dynamic Goodman diagram
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Figure 3.4: Notional comparison of %Gmax values as obtained from the max stress from ANSYS,
a SV surrogate model, and a FF surrogate model set
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Figure 3.4 illustrates a notional comparison between the SV %Gmax, FF %Gmax, and %Gmax

from ANSYS on the Goodman diagram. These points are only examples, and were not generated

using actual data. The black points represent FF predicted nodal values and the yellow star rep-

resents the max steady stress from ANSYS. The %Gmax is displayed as calculated from the max

steady stress from ANSYS, the FF surrogate models, and the SV surrogate model. This illustrates

how both types of surrogate models may predict different values than ANSYS. It also demonstrates

how the various values are obtained.

3.4.4 Results

The percent error of the max stress, %Gmax, and max %Gnodal is determined using the

Eqn. 3.12, where X is either a %G or a max stress value.

%E =

∣∣∣∣Xem−XANSY S

XANSY S

∣∣∣∣∗100% (3.12)

The magnitude difference was calculated using Eqn. 3.13. These are simple differences in

magnitude of the various values. They are included to give additional context for the percent error

values. When comparing two values with small magnitudes, a percent error may be high, but the

magnitude difference can show that the actual difference may not be very significant in practical

terms.

MD = |XANSY S−Xem| (3.13)

These values were obtained for each of the 500 designs in the test DOE. The average of the

percent error and magnitude difference for the %Gmax and max steady stress values are presented

together in Tab. 3.2. The improvement gained refers to how much lower the FF %Gmax is than

the SV %Gmax and follows the equation 1− (FF/SV ). Both the percent error and magnitude

difference indicate that, for this data set, the FF surrogate model set provides data that allows

for a more accurate calculation of the %Gmax than the SV surrogate models do. The magnitude

difference shows that, on average, the FF %Gmax is different from ANSYS by a value of 0.4 while

the SV %Gmax is different by a value of 0.6.
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This is partly explained by the accuracy results for predicting the maximum steady stress.

The %Gmax depends on the max stress value. Because the max stress is more accurately predicted

using the FF surrogate models, it would be beneficial to use the FF predicted max stress for this

calculation instead of the SV predicted max stress. Figure 3.4 helps visualize these values. The

data shows that FF %Gmax is closer than the SV %Gmax is to the ANSYS %Gmax value. In this

data set, the FF surrogate models predict the max steady stress with a mean percent error that is

53.54% lower than the mean percent error for the SV surrogate model’s max steady stress. The

average magnitude difference also shows that, on average, the FF surrogate models predict a closer

value to ANSYS than the SV surrogate model for max steady stress. It follows that calculating the

%Gmax using the FF surrogate models from Eqn. 3.9 will be more accurate than the SV counterpart

in Eqn. 3.8. Thus, even for applications where the more conservative %Gmax value is desirable,

this data indicates that the FF surrogate model set would produce much more accurate values than

the simple SV surrogate model would.

Table 3.2: FF vs SV %Gmax error

Value Avg. Perc. Error Avg. Mag. Diff.
FF %Gmax 0.904% 0.4%
SV %Gmax 1.504% 0.6%
Improved 39.91% 27.97%
FF σs,max 2.30% 6.7 MPa (967.2 psi)
SV σs,max 4.94% 12.3 MPa (1780.0 psi)
Improved 53.54% 45.66%

3.4.5 Results for FF %Gmax,nodal

With some confidence gained concerning the accuracy of the FF surrogate model set, the

FF %Gmax,nodal can now be examined. Because the SV surrogate model only predicts the maxi-

mum steady stress, there is no one-to-one comparison between FF and SV values for %Gmax,nodal .

However, the FF %Gmax,nodal can still be compared to the %Gmax,nodal as obtained by the test

data from ANSYS. These results are presented in Tab. 3.3. The average percent error is still low

(1.337%). This provides a frame of reference as the design benefits are outlined in the next section.
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Table 3.3: FF %Gmax,nodal vs ANSYS error

Value Avg. Perc. Error Avg. Mag. Diff.
FF %Gmax,nodal 1.337% 0.5

3.5 Using %Gnodal Instead of %Gmax

The %Gmax values compared in the last section have some benefits that may make them

a more desirable choice over using a collection of %Gnodal values for every node on a part. The

%Gmax is much simpler to find, and requires far less computation. When used with a SV surrogate

model, the training data required is also simpler to obtain, and requires less memory. Because it is

only one value, it can conveniently be used to summarize the fatigue risk of an entire part.

However, summarizing an entire part by the stress at one location or some other single

value method neglects information about the rest of the part that could be useful in making design

choices. No information is conveyed concerning the distribution of risk in different locations.

Important differences in designs can also be obscured. In particular, the %Gmax may be considered

overconservative in some cases. This can result in over-designing for fatigue, raising costs and

weight unnecessarily [69]. In the design of parts for jet engine turbomachinery, it is very desirable

to minimize both costs and weight if structurally feasible.

Using the information across a part, such as the entire collection of %Gnodal values, can

help mitigate some of these limitations. This section will illustrate the advantages of specifically

using the %Gnodal values instead of the %Gmax.

Using only the %Gmax values would show the response of a single point. The %Gmax

provides little information about the full response of the part. If the %Gmax increases between

two different designs, it might be concluded that the entire part is at more risk of fatigue failure in

the new design. However, the shape that comes from using every node’s position on a Goodman

diagram communicates whether or not a high percentage of points have high risk of fatigue failure.

Figure 3.5 shows the nodal information mapped onto the Goodman diagram for two dif-

ferent designs of a compressor blade. The second design was obtained by adjusting the Lean

parameter. The change in data on the Goodman diagram occurred as a fluid real-time response as

the parameter was changed. Observing the behavior in this type of design activity leads to better

intuition about the effect of variations in a single parameter on the entire part. In Fig. 3.5a, the
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Figure 3.5: The %Gnodal results before and after changing the Lean parameter from 0.00 mm (3.5a)
to 6.86 mm (0.27 in) (3.5b). The node with the %Gmax,nodal is indicated by the dashed line.

%Gmax,nodal is 32.32%, and the %Gnodal values for the rest of the nodes show that there is a fairly

even distribution from 0% to 32.32%. In Fig. 3.5b, the %Gmax,nodal is much higher (72.72%).

However, the rest of the %Gnodal values show that only a small portion of the nodes are very high;

the majority are about 30% or lower. The shape of the distribution of points also indicates that there

are two major groups: one “branch” is low, while the other has the higher values. The %G values

for every node reveal distinctions and patterns that are not visible when neglecting the response at

every node.
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Figure 3.6: Three different blade designs with almost identical SV %Gmax values but different ge-
ometries, FF %Gnodal values, and shapes on the Goodman diagram. The geometry views (left)
show steady stress results while the Goodman diagrams (right) show the %Gmax values (gray
square with a black line) and the %Gnodal values (colored points, with a red line indicating the
%Gmax,nodal point). Top = Design 1, Middle = Design 2, Bottom = Design 3.

Using only the %Gmax also obscures the differences between designs. There may be similar

%Gmax values, but they do not convey inequalities of various designs. Consider the case presented

in Fig. 3.6. Three different designs are shown, with the main geometric variations occurring in the

Lean and Sweep parameters. The Goodman diagrams are presented alongside three-dimensional

visualizations of the geometry which have the steady stress values at each node mapped onto the
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surface. The three different designs produce very similar %Gmax values: the %Gmax for each is

about 45%, shown with a gray square on the maximum alternating stress line. With only the %Gmax

values, there is nothing to distinguish these designs from one another. However, the responses for

every node on the Goodman diagrams show three different %Gmax,nodal values, ranging from 36%

to 44% (see Tab. 3.4). In addition, the shape of the data changes greatly from one design to the next.

Some designs have nodes that have a mostly linear relationship between the steady and alternating

stress, while others have groups of nodes with low steady stress but high alternating stress.

Table 3.4: The %Gmax and %Gmax,nodal for each of the three designs

Design %Gmax %Gmax,nodal
1 45.7% 39%
2 45.8% 36%
3 45.9% 44%

The three-dimensional visualization of the steady stress contours helps provide context to

the information in the Goodman diagrams. This visualization is made possible by obtaining the

steady stress and nodal coordinate values from either an FEA solution or FF surrogate model set

predictions, and reveals further differences between the three designs. The max stress is similar

between the designs, but the three-dimensional visualizations reveal that the node with the max

stress is located in different areas of the part. The part also has very different geometries and stress

distributions. Using the %Gmax value as the only criteria, these three designs appear to be nearly

identical, and no indication of the differences is given. Instead of just a single value, using the full

set of nodal values allows a designer to evaluate a design based on many criteria at once, including

geometrically visualized data.

These cases illustrate how using the %Gnodal values can help to reduce unnecessary con-

servatism. The %Gmax value is a type of “worst-case” scenario, and neglects the true variations

between designs. Instead of merely deeming a design as acceptable by a single desired %G value,

using all the %Gnodal values gives a much more complete view of the fatigue life of the entire

part, and can reveal many differences. Moreover, the %Gmax,nodal values are often shown to be far

smaller than the %Gmax values, indicating that the %Gmax may be overly conservative.
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3.6 Design Benefits

The previous section gave an indication of the accuracy of using FF surrogate model sets

to predict Goodman response data. The benefits of using the %Gnodal instead of the %Gmax were

also discussed. This section builds on those findings and suggests the design benefits that come

from using the following:

1. FF surrogate models to predict the alternating and steady stresses at every node

2. Calculating the %G values from these predicted stress values

3. The %Gnodal values as a method of evaluating risk of fatigue failure rather than conservative

summary methods like %Gmax

These design benefits include:

1. A dynamic Goodman diagram

2. Faster response times

3. Better intuition about parameter and response relationships

4. Understanding about which geometric locations are at most risk of fatigue failure

5. An ability to combine fatigue analysis with other early design process activities

The data in the examples for this section were obtained using a 25K node model of the

Purdue blade, rather than the 250K node model used in the previous section. Though predicting

and visualizing results for the 250K node model occurs in real time (under one second per update),

the researchers used a model with a smaller node count for convenience.

3.6.1 Dynamic Goodman Diagram

By using two FF surrogate model sets - one to predict the steady stress at every node

and one to predict the alternating stress at every node - it becomes possible to create a dynamic

Goodman diagram. The predicted points can be plotted on the Goodman diagram, and as variations
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are made to the inputs of the surrogate models, the collection of points on the Goodman diagram

will update in real time. These points can be colored by using the steady and alternating stress

predictions to calculate the %Gnodal values at each node (Eqn. 3.10), and give an evaluation of the

fatigue life of each node in the model.

The ability to control and vary the parameter values allows the designer to adjust the inputs

to the FF surrogate model sets, and thus see the response of the data on the Goodman diagram

update. This control increases the usefulness of this application for design space exploration activ-

ities.

3.6.2 Faster Response Time

Without a rapid method of predicting this information, a designer must run a new analysis

in a finite element solver to obtain the full response of a part to changes in the design. This requires

an expense of time and computer resources (a computational cost). For a typical part, the time to

solve is affected by factors such as node count, model complexity, and computing power, and can

take anywhere from a few minutes to days [14]. For obtaining Goodman response information,

such as the %G values, this requires waiting for a structural and a modal analysis to complete,

calculating the %G values from the steady and alternating stress results at each node, and mapping

the updated %G values onto either a Goodman diagram or the geometry.

With the FF surrogate model sets, the response to the parameter changes occurs without

any appreciable delay. This includes a prediction of the full structural, modal, and the calculated

full Goodman response. These results and the associated visualizations occur as direct responses

to the design changes. This shortens the time needed to generate this information during design

space exploration activities when evaluating the validity of a design. It also makes it possible to

continuously change parameters during design exploration and see the responses fluidly updated.

3.6.3 Intuition About Parameter/Response Relationships

Creating a Goodman diagram without surrogate models requires a designer to perform sep-

arate static and modal analyses for each new design. This makes it difficult to gain intuition about

how variations in the design parameters affect the responses at different locations on the part. The
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calculation and visualization of the Goodman diagram’s results to the designer are often several

layers removed from the moment the actual design changes occur; this involves adjusting the model

environment and boundary conditions in FEA packages and then assembling results [26]. These

tasks are largely unrelated to the design changes and, coupled with the delay in response, can make

creative design exploration less fluid and feasible [26]. To save time, only certain representative

designs are evaluated instead of the entire range of designs across the design space.

With a dynamic Goodman diagram, designers may vary design parameters and observe

the responses immediately. A designer can thus consider information regarding the max steady

stress, the %Gnodal values, each node’s steady and alternating stress, and the shape of the plotted

data on the Goodman diagram all as direct responses to the changes in parameter values. In this

kind of application, the process of making changes and observing responses is much clearer and

simpler to use than setting up separate analyses and waiting for each variation’s results. There is a

clear link between the changed parameters and the resultant behavior, making it easier to develop

intuition and understanding about the part. It also is possible to explore more of the design space

at very low cost. This speed, the clarity of parameter/response relationships, the completeness

of available information, and the freedom to explore the design space rapidly makes it far easier

to gain intuition about which parts of the design space will yield the best results. Observing the

behavior in this type of design activity leads to better intuition about the effect on the entire part of

variations in specific parameters.

This type of information can be obtained without the FF surrogate model sets by using a

finite element solver, but would be subject to longer wait times. A structural and modal analysis

would have to be solved for each design. It would also take more experience and iterations to

determine candidate designs. The surrogate models allow the design space to be quickly explored

and identify designs of interest. If a design is deemed desirable by the designer, further small

variations to the design parameters can be made to find the optimal blade in that neighborhood

of the design space without the time loss of running a full analysis. This could be useful when

considering the outcome of an optimization routine. The surrogates could show the recommended

optimal design, and the designers could then adjust the parameters and generate visualizations to

explore the other variations in the vicinity of the solution. This could help them build confidence
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in the solution, or possibly reveal important factors the optimization routine was not set up to

consider.

3.6.4 Geometric Locations of Failure

By using the %Gnodal values on the Goodman diagram, other visualizations become pos-

sible. The colors indicating the %Gnodal values of every node on the Goodman diagram may be

mapped onto the three-dimensional geometry of the part. This lets a designer connect each node’s

percent Goodman value with a physical location on the part. Thus, a designer may see that a part

is at risk of failing in fatigue, but can also determine which specific locations are most likely to be

failing in fatigue. This visualization becomes essentially a different way of viewing and analyzing

the information on a Goodman diagram that plots the results of all nodes on the part.

Studies using similar three-dimensional visualizations were mentioned previously; how-

ever, these visualizations were not created with data predicted by FF surrogate models. Depending

on the number of nodes predicted, this method can generate visualizations for new designs in less

than a second, or essentially in real time. Under these conditions, these visualizations update flu-

idly in response to parameter changes and present a smooth exploration of designs throughout

the design space. This fluidity can provide much greater intuition about behavior than discrete

visualizations of different designs in the design space.

In Fig. 3.7, the three-dimensional geometry visualizations are shown with the %Gnodal val-

ues mapped onto their surfaces. For reference, they are shown next to corresponding visualizations

of the %Gnodal values on the dynamic Goodman diagrams. A designer can find a point on the

Goodman diagram and use its %G color to identify where it is on the blade surface. Just like the

Goodman diagram and three-dimensional mapping of the steady stress updated in real time to pa-

rameter changes in the last section, here the Goodman diagram and the three-dimensional mapping

of the %G values also update in real time.

While examining this information only on a Goodman diagram can indicate risk of fatigue

failure for each node, mapping and viewing that same information on the geometry provides more

information. Not only do the values on the geometry communicate the distribution of %G values,

but also show exactly where the %G values occur on the part. A designer can use the %G color

to determine how close a geometric location is to failing in fatigue. In these examples, the highest
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Figure 3.7: The data on the Goodman diagram can be mapped onto three-dimensional geometry
to provide insight into locations of potential failure. The %G values and colors on the Goodman
diagrams (right) are directly mapped onto the corresponding nodes on the blade surfaces (left).
The colorscale used on the Goodman diagram is now shared with the three-dimensional geometry
(top).

%G values occur closer to the root (bottom) of the blade, while the lowest values are found at the

tip (top) of the blade where the vibratory and steady stresses are smaller.

The relationship between this type of visualization and the accompanying Goodman dia-

gram can inform the design process in two directions; each visualization gives context and insight

into the other. Mapping the %G values onto the geometry allows designers to understand which

locations on the part are at the most risk of fatigue failure. On the other hand, seeing the colors

on the geometry allows a designer to understand possible geometric influences for why the points

behave a certain way on the Goodman diagram.

With only a SV surrogate or the %Gmax, there is no information given to the designer about

how to improve the design. All that is provided is a single measure of the fatigue risk of the part.

In contrast, the FF surrogate model sets allow a designer to understand the entire part’s fatigue risk
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as well as see which physical locations have the highest %G. This understanding can reveal what

changes need to be made.

Consider the case where the nodes of a part are represented as points on a Goodman dia-

gram, and all but a few have low %G values. The few points with higher %G values are not above

1.0, therefore they are not definitively failing in fatigue, but they are perhaps at greater risk than the

rest of the part. Rather than accepting or rejecting the design on this basis, a designer can look at

these points mapped onto the geometry. With the aid of FF surrogate model sets, this visualization

can respond to changes in parameter values. If the points with higher fatigue risk are in a critical

location, the designer may decide to adjust the design to reduce this risk. However, if they occur

at a location that is known to be less sensitive, then the designer may choose to accept the design.

A designer may also use the geometric location of those high %G value points to deter-

mine why they are high. By pairing this type of visualization with real-time FF surrogate model

predictions, the values on both the Goodman diagram and the three-dimensional visualization can

be updated as parameters are adjusted. By visualizing predicted results on a Goodman diagram

and the three-dimensional geometry, the effect of making parameter adjustments becomes clearer.

This allows a designer to make changes to the geometry and affect the distribution of %G values

across the part. This type of exploration may reveal certain parameters that can reduce the high

%G values, or even how to shift them to a less critical location on the part. With the %G values

mapped onto the geometry, a designer may also be able to use past engineering experience to know

which parameters could be shifted to lower the value or change the location of the high risk areas.

For example, if the high %G values are located at the root of a jet engine compressor blade, a de-

signer may see that increasing the chord at the root could reduce the alternating stress experienced

by that region and thus reduce the risk of fatigue for that area. This visualization makes it easier

to determine geometric causes for risk of fatigue failure at each node than it would be by simply

looking at these points a Goodman diagram. The low computational cost of predicting these results

with FF surrogate models also make it easier for designers to explore and adjust the design.

An additional visualization is possible in which the steady stress, alternating stress, and

%G contours are each rendered on three separate geometries in juxtaposed views. An example of

this presentation is shown in Fig. 3.8. When the three visualizations are shown with the Goodman

diagram, even more information is simultaneously available to the designer. Judgments about
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Figure 3.8: With FF surrogate models, it is possible to display a real-time updated view with 3-
dimensional visualizations of the steady stress, alternating stress, and %G contours alongside the
Goodman diagram

steady, alternating, and %G values at specific locations on the blade can be made together across

different designs in the design space. Conveniently, this presents all relevant information in one

interface for the designer: the Goodman diagram, the geometry, the steady and vibe stress for each

node on the blade, as well as the %G values. Unlike traditional methods, all of this information is

instantly responsive to any changes to the input design parameters.

This once again helps the designer avoid unnecessary conservatism. Instead of guessing

where to add material or how to change the shape of the blade in order to improve the fatigue life

of the part, now it is clear exactly what area needs to be improved. These improvements could

target fatigue life improvement for the entire part or just specific areas of interest. Even slight

reductions in weight or efficiency can have large financial savings in the jet engine industry. Thus

being able to directly see the location of needed improvement allows designers to make better and

more efficient judgments about how to improve the %G values on the Goodman diagram while

still saving costs.

3.6.5 Early Design Process Benefits

FF surrogate model predictions of the nodal steady and alternating stresses allow fatigue

analyses to be updated and presented alongside structural and modal analysis. Without these pre-
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dictions, fatigue analysis must occur after choices concerning geometry and structural design are

made [1]. If a design passes the criteria set for the structural and modal analyses, it is then eval-

uated with fatigue analysis. The fatigue analysis must occur after the previous analyses because

the Goodman diagram and associated information depend on their results. Designs that fail at the

fatigue analysis stage lead to further iterations of these processes. These iterations are repeated

until suitable candidate designs are chosen.

With FF surrogate models and the dynamic Goodman diagram, these analyses may be

considered simultaneously. The early design exploration can consider geometry, steady stress,

alternating stress, and fatigue life assessments together without waiting for expensive simulations,

thus freeing the designer to explore and observe many more design variations as needed. FF

surrogate models link all these responses to design space exploration. Where previously fatigue

analysis was removed from this type of exploration, here it is linked as a direct result of these

design changes. Insights about how fatigue analysis responds to changes in parameters may now

be formed more easily.

Having this type of information available at earlier design stages can reduce design and

analysis costs downstream, and can better prevent failure [56, 57]. Designers can be guided away

from designs that fail in fatigue without needing to perform as many design iterations. Fatigue

information can be considered for a larger number of design alternatives instead of only a few

selections [56].

3.7 Conclusions

A study about the accuracy of FF surrogate model sets compared to SV surrogate models

was conducted in the context of information on a Goodman diagram. This study has shown that FF

surrogate models can predict certain values, such as the maximum steady stress on a FEA model,

more accurately than a traditional SV surrogate model. Calculations based on these predictions,

such as the %Gmax, are also shown to be more accurate when using FF surrogate model sets than

when using SV surrogate models. While FF surrogate models require more work to set up, they

can provide a more accurate representation of the data they predict.

It has also been shown that using nodal information on a Goodman diagram can reduce

conservatism in evaluating fatigue life for an FEA model. When using a single point for evaluation,
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such as the conservative %Gmax value, only one value is obtained. Using every node’s position for

evaluation, such as the %Gnodal method, reveals variations in design and provides a much truer

understanding of the risk of fatigue failure across the entire part.

While a SV surrogate model can only predict one value, e.g. a SV %Gmax, FF surrogate

models can predict both single values and complete sets of nodal information, e.g. FF %Gmax and

FF %Gnodal . It can be noted that, in this particular study, the surrogate models were used to predict

stresses and the %G values were calculated off of these values. Simply predicting the %G values

for a part is less useful than also predicting the steady and alternating stresses that contributed

to those values. By predicting the stresses, the nodes’ locations may be plotted dynamically on

a Goodman diagram. This also allows for the contours on the three-dimensional geometry to be

dynamically switched between steady stress, alternating stress, and %G values.

The design benefits of using FF surrogate models to predict the nodal results in these anal-

yses have been described as:

1. A dynamic Goodman diagram

2. Faster response time for results

3. Gaining intuition about parameter/response relationships

4. Predicting the geometric locations of failure

5. Combining steps used in early design process iterations

In this study, FF surrogate models have been applied to fatigue analysis of jet engine com-

pressor blades, which enabled a dynamic Goodman diagram that can respond to parameter changes

in real time. This study focused on the benefits of using these FF surrogate models with the dy-

namic Goodman diagram, but similar methods could be applied to many other analyses and pro-

cesses in engineering design. They have the potential to allow more thorough design exploration,

shorten iterative design activities, and provide more accurate predictions than traditional uses of

surrogate models. Experimenting with these applications and their implications will be of great

benefit in establishing the usefulness of this method in industry and real-world design problems.
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CHAPTER 4. MODAL ASSURANCE CRITERION

In addition to fatigue life predictions, modal analyses are used during design space explo-

ration to study how a part’s geometry affects the vibratory displacement patterns (or mode shapes).

However, these mode shapes can be difficult to classify, and require comparison with known mode

shapes. Mode shapes are compared to one another with an equation called the modal assurance

criterion (MAC).

This chapter uses FF surrogate models to predict the modal displacements at every node on

the part. The full collection of displacement predictions is then used in the MAC equation with a

set of modal displacements from a reference mode shape attained in ANSYS (RQ1). The accuracy

of these predicted MAC values is compared with those obtained with SV surrogate models (RQ2).

It is found that FF surrogate models require a very high number of training samples to achieve

comparable accuracy to SV surrogate models for certain mode conditions. This is due to the

highly nonlinear nature of the data being predicted. While there are some benefits from using FF

surrogate models in this application, SV surrogate models remain a more feasible option (RQ3).

This study differs from the other chapters by predicting a displacement result (instead of

a stress result) at every node. Rather than examining predicted nodal results or calculating a new

result at every node from predicted data (like the %Gnodal values), this study combines all the

results from a static simulation with a single calculation (the MAC equation). The comparison

between FF and SV surrogate models in this study is not based on a single node’s results, but

between a type of summary of all the nodal results. This kind of result makes this comparison

unique from the other studies in this research.

This research has been submitted for publication to the journal of Mechanical Systems and

Signal Processing and is under review as of July 2019.
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4.1 Introduction

Modal analysis is a finite element analysis (FEA) process that allows aerospace engineers

to predict the modal responses for a part under specific conditions. Modal analyses calculate the

mode shapes, or relative displacements across the part, which occur at the natural frequencies.

These mode shapes help engineers predict the ways in which a part will vibrate in operation.

Understanding these vibrations and patterns is critical for designing safe and reliable parts.

The modal assurance criterion (MAC) measures the similarity between two mode shapes

from different designs [10, 22, 23]. Often, the MAC equation is used to compare each mode, d,

in a design to each mode, r, in a reference design with [22, 23, 78]. This reference design may be

a baseline design, a design that has been previously manufactured and tested, or simply another

proposed design that is being evaluated. Modal comparisons between specific modes are denoted

as d:r. The values of d and r are ordered according to the natural frequency values at which the

modes occur (i.e., d=1 or r=1 indicates the mode associated with the lowest natural frequency in

the design).

When comparing different designs with the MAC equation, the computational expense of

conducting a wide variety of modal analyses may make a thorough exploration of a design space

infeasible [12,67,79–81]. The computational cost of modal analyses depends on model complexity

as well as the number of mode shapes to be obtained. Although computing power has increased,

so has the need for more complex models [5]. Often in design space exploration fewer designs are

explored or lower fidelity models are used to compensate for the computational expenses [12, 14].

This could result in sub-optimal designs that are not necessarily the best choice from the design

space. The level of effort to adjust and properly set up each modal analysis often also makes them

less ideal tools for free real-time exploration of design variations [26].

To overcome the high computation time needed for expensive simulations, many aerospace

designers employ surrogate models to quickly predict needed information [5,7,8,12,66]. Surrogate

models (also known as response surface models, metamodels, regression models, or emulators [6])

create simplified mathematical relationships between inputs and outputs of a system. Using new

inputs, the surrogate models can then predict results in a fraction of the time it takes to perform the

original calculations [6,12,77]. These surrogate models are often used in design space exploration

or optimization routines in order to evaluate many design variations without the prohibitive cost of
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full simulations [7–12]. Denimal et al. [10] suggested that surrogate model methods ought to be

developed for better design space exploration and emulation of modal results.

Most surrogate models map a set of inputs to a single output value, and thus are limited

in the information they can predict [7]. They cannot predict the response of an entire system,

but instead predict a single value that represents the system (see Fig. 4.1 (top)). These types of

surrogate models will be referred to as single-value (SV) surrogate models.

Applied to MAC values, SV surrogate models can be used to predict MAC values for a

specific mode-to-mode (d:r) comparison. If properly trained, these SV surrogate models make

it possible to quickly update the MAC value in response to different input parameters without

needing to run a modal analysis for every new design. However, because they are trained for only

a specific type of modal comparison, they are limited in their utility (e.g., a SV surrogate model

trained to predict the MAC values in a d:r comparison cannot predict the MAC values in a d+1:r

or a d:r+1 comparison). They also can only predict the MAC values for comparisons with one

reference design. If comparisons with a different reference design are desired, then a new set of

SV surrogate models need to be trained on MAC values performed with the new reference design.

This results in SV surrogate models that only predict MAC values specific to a single comparison

and reference design. These limitations make SV surrogate models less adaptable to unforeseen

changes in design space exploration.

In recent years, methods for using surrogate models to predict the behavior of every node

in an FEA simulation in real time have been developed [14–16]. They generally take geometric

parameter values as inputs and predict FEA results for the entire part. These methods allow a

much more detailed and complete prediction of structural FEA results than SV surrogate model

methods, and enable a three-dimensional visualization of the structural results mapped onto the

part geometry. These surrogate models can be solved very quickly, allowing the predicted FEA

response to changes in parameter values to be shown in real time, where real time is defined as

updated responses appearing in under a second [14]. Because this use of surrogate models predicts

an entire field of responses from a FEA simulation, these will be referred to as full-field (FF)

surrogate models. This work uses the terminology of SV and FF surrogate model methods in order

to provide a distinction between these different uses of surrogate models. The difference between
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SV and FF surrogate models is illustrated in Fig. 4.1. While SV surrogate models only predict a

single value, FF surrogate models predict values for each node on a part.

f(x)

f
node1

(x)

SV:

FF:

f
node2

(x)

f
node3

(x)

x

x

x

x

Figure 4.1: (top) Single-value (SV) surrogate models only predict one value that represents the
response of the entire part across the design space. (bottom) Full-field (FF) surrogate models
predict the response of each node on the part across the design space.

With the possibility of predicting the complete nodal response across a part in real time, FF

surrogate models can be applied to predicting a particular mode shape (d), or the displacements

for every node in the mode shape. This predicted mode shape can then be used to calculate the

MAC value with another mode shape. The resultant MAC calculations would not be limited to a

specific modal comparison or a specific reference design (d:r, where r is any mode shape from any

reference design). These FF surrogate models provide a much more flexible tool to use in design

space exploration.

This research uses both SV and FF surrogate models to predict the MAC values for com-

pressor blades in a jet engine. The transonic Purdue compressor blade [18] will be used for demon-

stration purposes. The main contributions of this paper are the introduction of using FF surrogate

models as a method for predicting MAC values, and a comparison of the relative accuracy and util-

ity of both SV and FF surrogate models for this application. Accuracy is established by comparing

predicted responses to actual FEA responses. This is accompanied by a discussion on considera-

tions that should be made when using these methods. It is found that FF surrogate models may be
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used, but require a much larger number of samples than SV surrogate models to create reasonably

accurate predictions of the MAC values across the design space. Although this study uses a jet

engine compressor blade as the test object, the methods described are not limited to this specific

geometry.

Related topics and research associated with this study will be presented in the next section,

followed by a detailed explanation of the method for creating SV and FF surrogate models to

predict MAC values. Section 4.4 will describe the testing process for the accuracy study, and the

results will be presented in Section 4.5. This will be followed by a discussion of possible causes,

factors, and benefits of the two methods in Section 4.6 and general conclusions in Section 4.7.

4.2 Background

This research uses two forms of surrogate modeling to predict modal assurance criterion

values. This section outlines related concepts and research that pertain to the modal assurance cri-

terion and how surrogate models have been used previously to predict data from FEA simulations.

4.2.1 The Modal Assurance Criterion

The modal assurance criterion (MAC) computes the similarity between two mode shape

vectors [10, 22, 23]. The mode shape vectors φ consist of the modal displacements δ in X, Y, and

Z (δx,i, δy,i, δz,i) at each node i of the models [10, 23]. The structure of these vectors is shown in

Eqn. 4.1, where N is the total number of nodes in the model.

φ =


δx,1 δx,1 ... δx,N−1 δx,N

δy,1 δy,1 ... δy,N−1 δy,N

δz,1 δz,1 ... δz,N−1 δz,N

 (4.1)

The MAC value is calculated with Eqn. 4.2 [23], where {φ (d)
D }i is the ith node of the mode

shape vector for Mode d in the first design, D, and {φ (r)
R }i is the ith node of the mode shape vector

for Mode r in the second or reference design, R. This returns a value between 0.0 (no correlation)

and 1.0 (exact correlation) [23]. In this way, the MAC value indicates the degree of similarity
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between two mode shapes. Generally, a value of 0.9 or above is accepted as an indication that the

modes are of the same type [12].

MACd:r =

∣∣∣∑N
i=1

{
φ
(d)
D

}
i

{
φ
(r)
R

}
i

∣∣∣2(
∑

N
i=1

{
φ
(d)
D

}
i

{
φ
(d)
D

}
i

)(
∑

N
i=1

{
φ
(r)
R

}
i

{
φ
(r)
R

}
i

) (4.2)

The MAC value can be a useful tool in identifying a mode shape [23,78]. When compared

against a known mode, a high MAC value identifies a mode as of the same type. For example, if

a first bending mode shape occurs in both the proposed and the reference design, then the MAC

value between them will be close to 1.0.

Mode switching is a problem that must be addressed when performing modal comparisons

[12,23,82]. Mode shapes are not guaranteed to occur in the same order for every design [10,12,82].

Thus, for some modes, the order in which the particular mode shapes occur may be different.

Fig. 4.2 shows an example of mode shapes that could occur at the fourth and fifth natural

frequencies (i.e., Mode 4 and Mode 5). At different points in the design space, the frequency values

change and eventually switch places: the mode shape that occurs at the fourth natural frequency at

one point in the design space occurs at the fifth natural frequency in another, and vice versa. This

behavior is commonly exhibited only in higher modes; the first few modes are often similar across

the entire design space, while higher modes tend to switch places more often [83]. For meaningful

modal comparisons to be made, this type of behavior must be identified [12, 23, 82].

The MAC value can be used as a way to detect this mode switching [12]. When all designs

in a design space are compared against a common reference design and its mode shapes, then the

MAC values can indicate high correlation between different modes for different designs. If there is

no mode switching present, it is expected that the MAC values for primary comparisons (i.e., d:r,

where d = r) will be high (0.9 or above) and the MAC values for all secondary comparisons (i.e.,

d:r, where d 6= r) will be low (closer to 0.0) [23, 81]. For designs that have modes that experience

mode switching, however, there will be some primary comparisons that have low MAC values and

secondary comparisons that have high MAC values.

Fig. 4.3 presents an example of the MAC values between five design modes and five refer-

ence modes, where mode switching is present. These results are displayed on a traditional MAC

table to simultaneously present all modal comparisons between the new design and the reference
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Figure 4.2: A typical example of mode switching as a design parameter is varied.

design. Primary comparisons are highly correlated for Modes 1-3. Modes 4 and 5 have high

correlations with opposite modes, as a result of mode switching.

4.2.2 Surrogate Models of FEA Results

To properly train surrogate models with FEA data, it is necessary to first create a set of

training data [5, 10, 79, 83, 84]. To do this, a variety of designs are created by using a design of

experiments (DOE) to find a set of designs that adequately fill the design space. For a model with

n input parameters, each design instance is represented by an n-dimensional vector [26]. These

parameters values often control the geometry or conditions of a parameterized FEA model. The

parameter values for each design are considered the inputs for the surrogate model.

Once the designs in the DOE are identified, FEA is performed for each design and the re-

sults are collected [5]. FEA produces results such as stress or modal displacements for every node

on a model. The FEA results are considered the outputs for the surrogate model. The surrogate

models are trained on these inputs and outputs, and develop a mathematical function to describe

the relationship between them. Because the training depends on samples of the actual data taken

from the design space, this is known as a sample-based method [10, 79]. Once trained, the surro-

gate models can then take in parameter values for new designs to predict the full response of the
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Figure 4.3: An example set of MAC values for all comparisons when mode switching is present.

part. Instead of executing a new simulation each time a design change is made, a properly trained

surrogate model can provide the desired output value very quickly without expensive calculations.

Because SV surrogate models can only represent one value at a time, a SV surrogate model

can only predict specific values from a complete finite element analysis (FEA) results. Such values

may include the maximum stress of a part, the average displacement of a part, or the response of a

specific “monitor” node at some location of interest [7, 67]. These types of surrogate models have

been used to predict results in many parts of a jet engine, from the compressor and turbine blade

vibrations to aerodynamic coefficients experienced in various nozzle types [8,11,66,67]. Geller et

al. [7] noted that when single values are related to a geometric location, such as maximum stresses

or displacements, they can be more difficult to accurately predict with SV surrogate models.

SV surrogate models have been used to predict MAC values and other modal results. Qin

et al. [83] constructed SV surrogate models to predict modal frequency and MAC values in order

to update an existing FEA model to more accurately reflect experimental modal results. Bae et

al. [81] used surrogate models to predict modal displacements for integrated blade rotors in jet

engine turbomachinery. Nobari et al. [12] used surrogate models to map the relationship across a
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design space between design inputs and modal frequencies for a complex FEA model in order to

make recommendations for design improvement.

Surrogate model sets have been used to predict the stress and displacement response of each

node in a FEA model [14–16]. Both Heap et al. and Bunnell et al. were able to approach “real-

time” design exploration of finite element models by representing the nodes with surrogate models

[14, 16]. Bunnell et al. used a unique surrogate for every node’s stress, X location, Y location,

and Z location in order to predict the stress and geometric response to changes in geometry. These

collections of surrogate models represent an entire field of results from a FEA simulation, and are

called FF surrogate model sets. Both Schulz et al. and Bunnell et al. were able to predict the results

for an entire three-dimensional finite element model [14, 15].

The FF surrogate modeling method does not share the same limitations of the SV surrogate

models. Because the training data for FF surrogate model sets consist of the response at every

node, the FF surrogate model sets can predict the full response of the part. With these predicted

results, additional benefits are possible. Several implementations of the FF surrogate model sets

map the predicted nodal results onto a reconstructed visualization of the FEA model [14, 15]. By

contrast, the SV surrogate models cannot give full responses nor enable full visualizations of the

response.

Surrogate model accuracy depends largely on the number of training samples used [5]. It

has been shown that this is true for both SV surrogate models [11, 12, 85] and FF surrogate model

sets [14]. Bunnell et al. established that the accuracy of FF surrogate model sets when predicting

steady stress values decreased greatly as the number of training samples used approached zero.

Conversely, as the number of training samples increased, they approached 5% normalized root

mean square error (NRMSE) [14]. When the training data for surrogate models depends on com-

putationally expensive FEA simulations, it is desirable to get acceptable accuracy with a minimum

amount of training data [5]. Acceptable accuracy varies depending on the application and field.

Although the accuracy of FF surrogate models has been demonstrated for steady stress

data, it has not yet been established for modal data. Modal data in various forms has been found

to be challenging to emulate properly with surrogate models [2, 81, 86]. When using SV surrogate

models to emulate mode switching, Bae et al. found that more training samples are needed to

predict the data with sufficient accuracy [81]. This is because the modal data is highly nonlinear,
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especially when mode switching behavior is present. Because FF surrogate model sets predict each

node’s behavior across the design space, it is possible that they handle the nonlinearity of modal

data differently than do SV surrogate models. This research establishes that FF surrogate modeling

methods do not provide an advantage over SV surrogate modeling methods when predicting highly

nonlinear modal data.

4.3 Method

This section will discuss the basic principles for creating both SV and FF surrogate models

for predicting MAC values. A more specific application will be presented in Section 4.4. The

process for creating training data for FF surrogate models uses much of the same basic workflow

as described by Bunnell et al., and the interested reader is referred to [14] (especially Fig. 3)

for more complete details. This research expands on the previous method by using FF surrogate

models to predict modal displacement FEA results instead of steady stress FEA. It also performs

calculations (MAC values) on the predicted results.

The training data set for both the SV and FF surrogate models may be constructed using

a DOE with n dimensions, where n is the number of desired input parameters. Each collection

of parameter values constitutes a unique design instance. The suggested number of designs in the

DOE can depend on criteria such as computational resources, model complexity, and number of

dimensions.

These parameter values are used to update the geometry of a parametric model. Rather

than create a new finite element mesh for every new design, a mesh-morphing process is applied

to the baseline design’s mesh [2, 14]. This allows all the designs in the training data set to have a

common set of relative node numbers and locations [14]. The behavior of a specific node can be

determined across all designs in the training data set. The mesh for each design is used in a modal

FEA simulation, and the modal displacement results are stored.

These modal displacements are then scaled. Modal analyses produce mode shapes that

often are assigned an arbitrary scaling. Although the MAC calculation is invariant to scaling, the

surrogate models are not. By using a common scaling on the training data, the surrogate models

will predict a more even range of data and are more likely to be accurate [5]. This is done by
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scaling each sample design’s modal displacements by the largest magnitude displacement [78,87].

This process is described in the following steps:

1. Nodal displacements at each node are found for a particular design D and a particular mode

d:

φ
d
D =


δx,1 δx,1 ... δx,N−1 δx,N

δy,1 δy,1 ... δy,N−1 δy,N

δz,1 δz,1 ... δz,N−1 δz,N

 (4.3)

2. Magnitude displacements are calculated for each node, i:

∆i =
√

δ 2
x,i +δ 2

y,i +δ 2
z,i (4.4)

3. The maximum magnitude displacement is found:

∆max = max(∆1,∆2, ...,∆N−1,∆N) (4.5)

4. All displacements are scaled by the maximum magnitude displacement:

φ d
D

∆max
=



δx,1
∆max

...
δx,N
∆max

δy,1
∆max

...
δy,N
∆max

δz,1
∆max

...
δz,N
∆max


(4.6)

4.3.1 SV Surrogate Models

The process for training a SV surrogate model for a specific modal comparison (d:r) is

shown in Fig. 4.4 (top). A reference design is chosen a priori, and the reference mode shapes

are obtained. For each design in the training DOE, a specific mode shape d is chosen, and the
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Figure 4.4: The procedure for creating the SV (top) and FF (bottom) surrogate models

MAC values between design mode d and reference mode r are calculated. The collection of MAC

values for the comparison d:r constitute the training data for the SV surrogate model. Once the SV

surrogate model is trained, the surrogate model can accept a set of parameter values as a design

instance and return a prediction of the MAC value for comparison d:r (see Fig. 4.5 (top)). This

predicted MAC value will be referred to as a MACSV value.

Because each SV surrogate model can only predict a specific modal comparison, multiple

SV surrogates are needed to predict all modal comparisons. The MAC value is calculated for

every modal comparison between the reference design and each design in the training data set.

For d design modes, and r reference modes, there will be dr MAC values for every design in the

training data set. A different SV surrogate model is trained on the MAC values for each modal

comparison. Thus, for dr MAC values, dr SV surrogate models are needed. Together, these SV

surrogate models can predict dr different MACSV values.
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4.3.2 FF Surrogate Models

The FF surrogate models are created differently. Fig. 4.4 (bottom) illustrates this process.

The scaled modal displacements for a particular mode d constitute the training data for a FF surro-

gate model set. For d modes, there will be d FF surrogate model sets. Once the surrogate models

are trained, each FF surrogate model set can accept new parameter values as a design instance and

predict the nodal displacements of a mode shape.

These predicted modal displacements, or mode shapes, can then be used to calculate MAC

values. A MAC value is calculated with a predicted mode shape for the new design and a mode

shape from a reference design, as described in Fig. 4.5 (middle). These MAC values will be

referred to as MACFF values. Because the MACFF values are not predicted directly, the results

of a single FF surrogate model set are not limited to a single modal comparison as they are with

SV surrogate model sets. For a reference design with r modes, a FF surrogate model set trained

to predict a particular mode shape can be used to calculate r MACFF values. If there are d FF

surrogate model sets (one for each of d modes), then there can be dr MACFF values calculated.

By predicting the mode shapes and not specific MAC values, the FF surrogate models are

also not limited to comparisons with a single reference design. MACFF values can be calculated

between the predicted mode shape and the mode shapes of any number of reference designs. The

FF surrogate model sets allow the user much more freedom to quickly obtain a wide variety of

modal comparisons with a single prediction. This enables much more flexibility and extends the

utility of a FF surrogate model set even if criteria for making comparisons changes during design

space exploration.

The process outlined in this paper trains SV surrogate models to predict specific modal

comparisons and FF surrogate model sets to predict specific mode shapes. The modes are not

identified prior to training; the surrogate models predict the modes according to the original order

(e.g., a FF surrogate model set that was trained on data for Mode 4 will predict the mode shape

that occurs at the fourth natural frequency across the design space). If mode switching occurs, the

surrogate models should reflect this behavior.
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4.4 Accuracy Comparison

This section describes the conditions and process for evaluating accuracy of the surrogate

models in this study. The purpose is to test and compare the abilities of SV and FF surrogate

models to predict MAC values. This study provides general factors to consider when selecting a

surrogate model method for predicting the MAC values in design space exploration, and suggests

ways to address error in the models.

The error of a surrogate model refers to its ability to accurately predict the kind of data

with which it was trained. In this research, the surrogate models predict the results of a modal FEA

simulation. Surrogate models may be adjusted to more accurately represent a FEA simulation

by increasing the number of training samples, and a FEA simulation may be adjusted to more

accurately represent reality by increasing the fidelity of the model, adding parameters, and other

means. While using more accurate FEA simulations is ideal, the objective of this research focuses

on validation of surrogate model accuracy, not validation of a finite element model [12]. Thus,

the accuracy of the surrogate models is evaluated by comparing the surrogate models’ results and

the FEA results. Using FEA results of validation samples as a way to evaluate accuracy of values

predicted by surrogate models is consistent with previous work [10, 11, 76]. ANSYS 17.0 was the

FEA solver used in this research.

4.4.1 Model

This test will use the transonic Purdue blade model of a jet engine compressor [18], which

is a “blade-alone” model. This particular model has been meshed with 25000 nodes. The Purdue

blade was developed for research purposes and is a general representation of a compressor blade.

The model consists of various airfoil profiles, or airfoil shapes, with connecting surfaces. It has

been parameterized with the five parameters and bounds in Tab. 4.1. These parameters change

the geometry of the model by adjusting the profiles at the root and tip of the blade. The Angle

parameter adjusts the difference in the angle between the profile at the root and the profile at

the tip. The two Chord parameters adjust the chord length at the root and at the tip. The Lean

parameter offsets the tip profile in a direction perpendicular to the root profile’s chord, while the
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Sweep parameter offsets the tip profile in the same direction as the root profile’s chord. This

parameterization and associated controls are discussed in [14].

Table 4.1: Parameter bounds

Parameter Lower Bound Upper Bound
Angle -20 deg 20 deg
Chordroot 20.32 mm (0.8 in) 30.48 mm (1.2 in)
Chordtip 20.32 mm (0.8 in) 30.48 mm (1.2 in)
Lean -7.62 mm (-0.3 in) 7.62 mm (0.3 in)
Sweep -7.62 mm (-0.3 in) 7.62 mm (0.3 in)

The reference design used in this study is the baseline design; i.e., it is the design where

each parameter is at the center of its range (Angle = 0 deg, Chordroot = 25.4 mm (1.0 in), Chordtip

= 25.4 mm (1.0 in), Lean = 0 mm (0 in), Sweep = 0 mm (0 in)). Only the surface nodes are used

in order to reduce computational costs. In the MAC calculation, it is appropriate to not include

every node of a mode shape as long as there are the same number of corresponding nodes in both

mode shapes in the comparison. Some methods include using only a representative area of the

part, a critical area where displacements are deemed more significant than other areas [12], or only

the surface nodes. The nodes with the highest, or most significant, displacements for each mode

will occur on the surface of the part; therefore only using the results on the surface nodes is an

acceptable choice for this study.

4.4.2 Data

In order to create and then test the surrogate models, two data sets were created for both the

SV and FF surrogate models: a training data set and a test data set. These will be briefly described

in this section.

Training Data

As described in Section 4.3, a training set of design parameters (inputs) and FEA results

(outputs) must be generated to train the surrogate models. An optimized Latin Hypercube was

chosen because it is a space-filling design [5, 12, 77, 83]. Because the number of samples needed
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for accurate surrogate models in this context is unknown, this study used four training data sets with

different numbers of training samples: 100, 250, 500, 800, and 3500. Each of these samples was

used to update the parametric compressor blade model. The updated model was used to conduct

a modal analysis in ANSYS, and nodal displacement data was extracted for each mode of each

sample.

The MAC values for the comparison between every mode in the training data set and ev-

ery mode of the reference design were calculated and used to train dr SV surrogate models. The

SV surrogate models predict the MAC values across the design space for a particular mode com-

parison. This was repeated for each training data set in order to evaluate accuracy with different

numbers of training samples (SV100, SV250, SV500, SV800, and SV3500).

The displacements for each mode shape in the training data set were used to train d FF

surrogate models. The FF surrogate model sets predict the nodal displacements across the design

space for each mode, and MAC values are calculated with these predicted results. This was again

repeated for each training data set in order to evaluate accuracy with different numbers of training

samples (FF100, FF250, FF500, FF800, and FF3500).

For both SV surrogate models and FF surrogate model sets, radial basis functions (RBF)

were used. While other functions could be used to build the surrogate models, the authors chose

to use RBFs based on previous research and experience [14]. The RBF is an appropriate choice

for sparse training data in design spaces with many parameters [14, 16]. The RBF has also been

recommended as a good choice of surrogate model function for capturing highly nonlinear behav-

ior [76].

Test Data

In order to test the accuracy of the surrogate models, a separate set of designs must be

created. The surrogate models tend to be more accurate when predicting information that is close

to information used in the training data set [12]. If the surrogate models are used to predict the

same designs used in the training data set, the results may appear artificially accurate. Thus the

test designs must be distinct from those designs in the training data set [67, 77]. The objective is

to find points for comparing the response of the surrogate models to the actual data across the full

span of the design space.
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Figure 4.5: The process used in the test procedure to obtain the MACSV (top), MACFF (middle) and
MACANSY S (bottom) values. Shapes in bold are directly predicted by a surrogate model (MACSV
for SV surrogate models and mode shape d for FF surrogate models)

A new DOE and data set were created with 500 different designs using the same process

as before. The MAC values for each mode shape in this data and each mode of the chosen refer-

ence design were calculated. Because they were calculated with data from ANSYS, and were not

predicted directly or calculated from predicted data, they will be referred to as MACANSY S values.

These MAC values formed a test data set, and were used for validation against values predicted by

the surrogate models [10, 76].

The number of designs in the test data set was also independent of the number of designs

in the training data set. Given that the same parameters and parameter bounds are used in different

surrogate models, the same test data set can be used to test accuracy across surrogate models with

any number of training samples. Thus, for this study, the test data set with 500 designs was used

to test the accuracy of the 100, 250, 500, and 800 sample surrogate models.
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4.4.3 Test Procedure

The following process was used for each design in the test data set. It is represented graph-

ically in Fig. 4.5.

1. Using the ANSYS data from the test data set:

(a) Obtain the modal displacements for each mode in each design of the test data set

(b) For each mode d of the test design:

i. Calculate the MACANSY S values between the displacements for the test design

mode d and each mode r in the reference design

2. Obtain the predicted MAC values for the test design with the surrogate models

(a) Using the FF surrogate model sets:

i. For each mode d of the test design:

A. Obtain the predicted full field of modal displacements with the appropriate FF

surrogate model set

B. Calculate the MACFF value between the predicted displacements for the test

design mode and each mode r in the reference design

ii. Calculate the error between the MACFF values and the MACANSY S values (EFF )

(b) Using the SV surrogate models:

i. For each mode comparison d:r of the test design modes d and reference design

modes r:

A. Use the appropriate SV surrogate model for the comparison d:r to predict the

MACSV value between the test design and the reference design

ii. Calculate the error between the MACSV values and the MACANSY S values (ESV )

4.5 Results

This section describes the results from the accuracy study. Error between predicted MAC

values (MACSV , MACFF ) and MACANSY S values is measured by the magnitude difference. These
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are simple differences in magnitude of the various values, and are calculated by Eqn. 4.7 and

Eqn. 4.8. The magnitude error was chosen over percent error because, with small values, the

percent error equation can produce large error and convey misleading information about the true

difference. Since all MAC values are between 0.0 and 1.0, the magnitude error is an appropriate

choice. These magnitude error values were obtained for all mode comparisons for each of the 500

designs in the test DOE; that is, there are 25 MAC values for each design in the test DOE, and thus

25 ESV values for the SV surrogate models and 25 EFF for the FF surrogate model sets for each

design.

ESV = |MACANSY S−MACSV | (4.7)

EFF = |MACANSY S−MACFF | (4.8)

Fig. 4.6 shows all of the magnitude error results for the 500 sample surrogate models (SV500,

FF500). The MAC values from the surrogate models (MACSV,500, MACFF,500) are compared to the

ANSYS MAC values (MACANSY S) for every mode comparison of every design in the test data set.

With perfect accuracy (ESV =EFF=0.0), the data would appear as a straight, diagonal line between

the origin and (1.0, 1.0). Because of error in the surrogate models, there is deviation in the data.

The points are colored by the level of magnitude error.
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Figure 4.6: The MACFF (left) and MACSV (right) MAC values from the FF500 and SV500 surrogate
models for all test designs compared to the MACANSY S values. Coloring reflects the magnitude
error values, with red being higher error and blue being lower error.
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This image shows that, overall, FF500 has greater magnitude errors than SV500. There are

certain designs and mode comparisons where FF500 predicts the opposite values as the MACANSY S

(MACFF,500 = 1.0 but MACANSY S=0.0). While SV500 is more accurate, it still has a large degree of

error.
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Figure 4.7: The predicted FF and SV MAC values from the SV500 and FF500 surrogate models for
all test designs compared to the MACANSY S values separated by each mode. Points are colored by
the reference mode used in each MAC comparison.

Fig. 4.7 shows the same data as Fig. 4.6, but it is separated by the design modes into

subplots. The comparisons with each design mode and the reference modes are represented by

different colored points. The figures show how well the SV and FF surrogate models predict the
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MACANSY S values. For some comparisons, the MACANSY S values are closer to 0.0, while others are

closer to 1.0.

While the SV surrogate models still have less severe errors for the 500 sample training

data set, this figure demonstrates how the surrogate models’ accuracy depends on the particular

design modes and reference modes involved in the MAC comparisons. For Modes 1-3, no mode

switching behavior is present: the MACANSY S values are either close to 0.0 (no correlation) or close

to 1.0 (high correlation). As expected, the high correlations occur for primary comparisons while

the low correlations occur for all other secondary comparisons. The SV surrogate models for the

most part represent the same behavior as the MACANSY S values for all comparisons in Modes 1-3

(0.00≤ ESV ≤ 0.04, ESV,avg = 0.0009). The FF surrogate models, however, have more error. While

the FF surrogate models predict MAC values close to the true MACANSY S values for all comparisons

with design mode 1, the next two plots show how the MACFF values for the specific comparisons

2:2 and 3:3 have significant deviations from the true values (0.00 ≤ EFF ≤ 0.90, EFF,avg = 0.05).

This tendency towards higher error in the FF surrogate model increases with each mode.

On Fig. 4.7, the MACANSY S values for comparisons between Modes 4 and 5 do not occur

only near 0.0 or 1.0; thus, in this design space, this is an indication that mode switching is occur-

ring. For example, at various places in the design space the MACANSY S values for 4:4 are close to

1.0 and 4:5 are close to 0.0, while at other places the MACANSY S values for 4:4 are closer to 0.0

and 4:5 are closer to 1.0. The same behavior is seen between 5:4 and 5:5. There are also a range

of designs in the design space where these modes are in the process of switching places (e.g., both

4:4 and 4:5 are closer to 0.5 than either 0.0 or 1.0).

The MACSV values for Modes 4 and 5 represent the same general behavior as the MACANSY S

values, but have greater deviations than previous modes (0.00 ≤ ESV ≤ 0.50 for design modes 4

and 5, ESV,avg = 0.019). The MACFF values have a much greater range of error (0.00≤ EFF ≤ 0.94

for design modes 4 and 5, EFF,avg = 0.05). This primarily occurs in comparisons between Modes

4 and 5 (EFF,avg = 0.10 for 4:4 and EFF,avg = 0.12 for 5:5). There are places in the design space

where, again, MAC values predicted by the FF surrogate models are exactly opposite those found

by ANSYS. While both SV and FF surrogate models have more designs with large magnitude

errors at the higher modes, the SV surrogate models do so to a much lower degree.
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Figure 4.8: The moving average trends of the MACANSY S, MACFF , and MACSV values across the
design parameter Chordroot . The FF and SV lines indicate how closely the predicted MAC values
follow the trends of the MACANSY S values. Mode switching is present in the comparisons between
Modes 4 and 5.
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Figure 4.9: The trends of EFF and ESV for F500 and SV500 across the design parameter Chordroot
for comparison 4:4. The SV surrogate models have lower error at almost every part of the design
space.

4.5.1 Fit to Nonlinear Data

These plots establish that, with 500 samples, the MAC values as calculated from mode

shapes predicted by the FF surrogate models have a higher degree of error than the MAC values

predicted by the SV surrogate models. This is especially true for modes where mode switching
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is present. To understand why, it is helpful to look at how the MAC values change throughout

the design space. For simplicity, Fig. 4.8 shows just the root chord parameter, Chordroot , and the

interaction between the last three modes (Modes 3-5) in both the new design and the reference

design. The moving averages of the MAC values for each modal comparison are represented as

separate lines. This figure gives an indication of how well, on average, the SV and FF surrogate

models predict the actual ANSYS data.

The top row of Fig. 4.8 shows the modal comparisons involving Mode 3 from the test DOE

and Modes 3, 4, and 5 from the reference design. Because there is no mode switching in Mode 3,

the comparison of 3:3 has high values close to 1.0 (high correlation) and the comparisons of 3:4

and 3:5 have low values close to 0.0. This is true for the MACANSY S, MACFF , and MACSV values

across every value of Chordroot . However, the MACFF values for comparison 3:3 have much more

variability than the MACSV values.

In the next two design modes, mode switching is present. If no mode switching were

present, comparisons 4:4 and 5:5 would be close to 1.0, like comparison 3:3. However, the data

shows that, as Chordroot changes, so does the correlation between Modes 4 and 5 in the test designs

and Mode 4 and 5 in the reference design. When the Chordroot values are low, the MAC values

are high for comparison 4:4 (high correlation) and are low for comparison 4:5 (low correlation).

However, as Chordroot increases, Mode 4 of the test design becomes less correlated with Mode 4

of the reference design and more highly correlated with Mode 5 of the reference design. Similar

behavior is observed in Mode 5 of the test designs.

While this is the general trend, the MACANSY S values show that the data is very erratic. At

different points, the modes cross back and forth (e.g., when Chordroot has values between 0.5 and

0.7). This is partially because the points are also varied across all five geometric parameters, not

only Chordroot , and it is difficult to represent in two dimensions. However, the mode ordering for

mode switching across a design space can be inherently nonlinear. Examining the moving average

lines for MACFF and MACSV , there are certain areas where the surrogate models fail to capture

the behavior of the MACANSY S data. For example, at Chordroot = 0.60, both SV and FF surrogate

models struggle to predict the MAC values for comparisons 4:4, 4:5, 5:4, and 5:5; however, the

moving average lines show that the FF surrogate models predict these values with less accuracy

than the SV surrogate models. There are regions where the FF surrogate models predict very
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poorly (Chordroot = 0.5 for design mode 4 and Chordroot = 0.7 for design mode 5). Overall,

the SV surrogate models predict the MACANSY S values much more closely than the FF surrogate

models.

As a closer illustration of this data, the values of ESV and EFF for comparison 4:4 as

Chordroot varies are shown in Fig. 4.9. These plots illustrate the difference in accuracy between

the FF and SV surrogate models. The 4:4 SV surrogate model has less magnitude error than the

FF surrogate model set at almost all locations.

Fig. 4.8 illustrates that the MAC data being predicted becomes highly erratic and nonlinear

when mode switching is present. This is one possible reason why FF500 has less accuracy than

SV500. The moving average lines in these plots also show that there is possible underfitting in

predicting the behavior of the MACANSY S values. To better represent highly nonlinear data, using a

greater number of training samples is a typical strategy for increasing the accuracy [12, 81].

4.5.2 Number of Training Samples

To observe the effect of the number of training samples on the surrogate model accuracy,

the analyses shown above for the 500 sample surrogate models were repeated for the SV and FF

surrogate models created with 100, 250, 500, 800, and 3500 sample training samples.

To represent the accuracy of the SV and FF surrogate models between different numbers of

training samples, the root mean square error (RMSE) of the MAC values at each comparison was

measured. The RMSE is a common metric for measuring the accuracy of a surrogate model over a

design space [5,12,77]. This allows a direct comparison between the SV and FF surrogate models

for the results of each of the 25 different modal comparisons. The behavior of these RMSE values

was tracked as the number of training samples used in the surrogate models was varied.

The changes in RMSE for each modal comparison are shown in Fig. 4.10. Each subplot

displays the comparisons with a different design mode (e.g., the first plot of Fig. 4.10 shows com-

parisons with design mode 1: 1:1, 1:2, 1:3, 1:4, and 1:5). The dashed lines show the RMSE for

the MACSV values and the solid lines show the RMSE for the MACFF values over the different

numbers of training samples.

These figures indicate that, for all comparisons, increasing the number of samples reduces

the RMSE. For Mode 1, both FF and SV have extremely low RMSE, even with only 100 training
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Figure 4.10: The effect of different numbers of training samples on the RMSE of the surrogate
model predictions of each comparison. Each plot shows comparisons with a different design
mode. The RMSE of the MACSV values are represented with dashed lines, and MACFF values
are represented with solid lines.

samples. For Mode 2, the 2:2 MACFF values had a 15.1% RMSE. With 500 samples, this decreased

to 9.2% RMSE, and with 3500 training samples it reached 8.3% RMSE. All other comparisons

using the FF surrogate models reached under 2.0% RMSE with 500 samples or higher. For the SV

surrogate models, all comparisons for Mode 2 had below 2.0% RMSE for any number of training

samples tested. Mode 3 had similar behavior, with FF surrogate models reaching 7.0% RMSE

comparison 3:3 after 3500 samples, and all other comparisons using the FF surrogate models

reaching under 2.0% RMSE with 800 samples or higher. Again, all comparisons for Mode 3

had below 2.0% RMSE for any number of training samples tested.
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Modes 4 and 5 illustrate how comparisons that exhibit mode switching affect the number of

samples needed. While non-switching comparisons do not require very many training samples for

fairly low RMSE, comparisons between the design and reference Modes 4 and 5 (4:4, 4:5, 5:4, and

5:5) require many more samples than previous modes. This is true for both FF and SV surrogate

models, although the SV surrogate models required less training samples than the FF surrogate

models. Even at 3500 samples, the FF surrogate models still have between 10.0-12.0% RMSE. By

contrast, these are about the same RMSE ranges that can be expected of the SV surrogate models

with only 100 samples. The SV surrogate models have 6.0-9.0% RMSE for these modes at only

800 training samples. With 3500 samples, this goes down to 4.0-6.0%.

These plots demonstrate how, if the mode comparisons that are to be predicted are non-

principal comparisons (e.g., 1:2, 2:5, 5:3, etc), a relatively low number of samples is required to

create a reliably accurate design space. However, for principal comparisons (e.g., 1:1, 2:2, 3:3,

etc), the FF surrogate models require a much greater number of samples to achieve this accuracy

than do SV surrogate models. Further, when mode switching is present, both SV and FF surrogate

models struggle to predict the behavior accurately. Increasing the number of training samples

does indeed help the problem; however, SV surrogate models require far fewer samples than do

FF surrogate models. The FF surrogate models still have relatively high error even after using a

near-prohibitively high number of training samples, indicating that even more samples should be

used.

4.6 Discussion

The results of the previous section show that SV surrogate models are more accurate than

FF surrogate model sets when considering the same parameters and training sample size. Both

methods were affected by the erratic shape of the data due to mode switching, as well as the

increasing complexity of higher modes.

These results support the conclusions of previous research. Just as previous methods had

more challenges in using SV surrogate models to emulate mode shapes that experience mode

switching behavior than other mode shapes [81, 82], this appears to be true for FF surrogate mod-

els as well. As Bae et al. [81] observed, this is likely due to the highly nonlinear behavior that

accompanies mode switching.
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It has been recommended that, for SV surrogate models, higher numbers of training sam-

ples can improve predictions of this kind of nonlinear behavior [81]. This research confirms that

this is true for both the SV and FF surrogate methods used in this study. It also adds the conclusion

that FF surrogate models require up to 3400 more training samples to achieve the same level of

accuracy as SV surrogate models in making these predictions.

4.6.1 SV vs FF Surrogate Model Accuracy

Although this does not appear to be the case in this study, FF surrogate models can be

more accurate than SV surrogate models in some applications. Consider the case of predicting the

maximum steady stress of the same part used in Section 4.4. A SV surrogate model is created that is

trained on the maximum steady stress of 500 training samples, and directly predicts the maximum

steady stress. A FF surrogate model set is created that predicts the steady stress response of every

node on the part across the design space. The maximum steady stress is then identified from this

set of predicted nodal steady stresses.

Tab. 4.2 shows the results of this case. The improvement gained refers to how much lower

the error for the FF max stress is than the error for the SV max stress, and follows the equation

improvement = 1− (FF/SV ). In this data set, the FF surrogate models predict the max steady

stress with a mean percent error that is 53.54% lower than the mean percent error for the SV surro-

gate model’s max steady stress. The average magnitude difference also shows that, on average, the

FF surrogate models predict a closer value to ANSYS than the SV surrogate model for max steady

stress.

Table 4.2: FF vs SV max steady stress error

Value Avg. %Error Avg. Mag. Error
FF σs,max 2.30% 6.7 MPa (967.2 psi)
SV σs,max 4.94% 12.3 MPa (1779.9 psi)
Improvement 53.54% 45.66%

The question of why the FF surrogate models perform better for predicting the maximum

steady stress than the MAC values in this study is worth considering. The maximum steady stress

102



www.manaraa.com

depends on the accurate prediction of each individual node, and the maximum steady stress is the

predicted value of a single node. Fig. 4.11 presents a simple example of how, when two nodes are

present, a SV surrogate model may inadvertently create a smooth function that misses the detail

present in the system. When using a FF surrogate model, the behavior of the nodes is more fully

captured, and thus the FF surrogate model is better at predicting the results of the max stress.

Though there is some error present in the prediction of an individual node’s results, it has less

effect than the error in the SV surrogate model’s interpolation. This same principle works when

using higher numbers of nodes, such as the results of Tab. 4.2.
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Figure 4.11: An example of how a FF surrogate model set predicts maximum stress better than a
SV surrogate model on a 2-node model. (left) the behavior of each node (solid lines), with the true
maximum stress behavior (shaded); (middle) the predicted maximum stress behavior (shaded) by a
SV surrogate model (dashed); (right) the predicted behavior of each node by a FF surrogate model
set (dashed) with the predicted maximum stress behavior (shaded). TODO: add labels.

However, unlike predicting a single nodal response like the maximum stress, the MAC cal-

culation combines the nodal responses across the entire part into one value. Unlike a SV surrogate

model, the FF surrogate model has error at each individual node. When using a calculation that

combines all the nodal responses, these small errors are likely compounded, causing greater error

in the calculated value. The highly nonlinear nature of the modal data contributes to this.

4.6.2 Improving Accuracy

The accuracy of the surrogate models depends greatly on the number of training samples

[10, 81, 85]. The results shown in Fig. 4.10 reflects this. As the number of training samples are
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increased, the RMSE decreases. As a general rule, as complexity and variance in the data increases,

more training samples are required. This is affected by factors such as the types of parameters used

in the design space as well as how much variance exists in the data being predicted. When mode

switching occurs in the mode shapes being predicted, the data becomes highly nonlinear, and the

number of training samples required increases dramatically.

While these trends were observed in both SV and FF surrogate models, it occurred to a

much lesser degree with the SV surrogate models than with the FF surrogate models. Because

each training sample requires a full modal analysis, the cost of creating a surrogate model begins

to be outweighed by the cost of creating training data if the number of training samples is ex-

tremely high. The higher numbers of training samples required may make FF surrogate models

less advantageous.

Because the detection and identification of the switched modes would be done prior to

training, it would negate the purpose of using the surrogate models to detect mode switching, but

could still preserve other benefits. The surrogate models would still be able to show the range of

variation across the design space for specific, identified modes. Evaluating this method could be a

subject for future work.

4.6.3 Benefits

While FF surrogate models were found to be less accurate than SV surrogate models when

predicting MAC values, there are associated benefits that may make either of these options desir-

able, provided that enough samples are used for sufficient accuracy. Both methods (SV and FF)

can be used in real-time design space exploration to produce the results of all modal comparisons

as a direct and real-time response to changes in input parameters. As inputs are modified, this be-

comes a way to detect mode switching and perform mode identification; high MAC values indicate

that a certain proposed design has a positive correlation with a reference design, while low MAC

values indicate poor correlation. When traversing the design space, as mode switching occurs, the

predicted MAC values for the relevant modes will tend towards 0.5, and then switch places. A

designer can easily explore and determine which areas of the design space exhibit this behavior.

These MAC results could be presented in a classic MAC table, such as Fig. 4.3, that dynamically

updates as parameters are changed.
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In addition, the FF surrogate model sets enable a more general approach. Because they

predict the modal displacements for every node of a proposed design’s mode shape, these dis-

placements can be used to calculate the MAC value against any mode and any reference designs.

In other words, the reference design and reference modes can be chosen and changed at runtime.

This allows designers to have more flexibility in the design process, without needing to train fur-

ther data. By contrast, the SV surrogate models are trained on specific MAC values for specific

modal comparisons with a specific reference design, and cannot be changed at runtime.

It is also possible for FF surrogate models to display the predicted modal displacements

on a three-dimensional representation of the part. In a similar manner to the methods shown by

Bunnell et al. [14], these predicted displacements can be shown as contours on the visualization,

and update in response to new parameter inputs in real time. This allows a designer to quickly

explore the design space and gain intuition about the behavior of the mode shapes with instant

visual feedback. This speed depends on the fidelity (node count) of the model as well as the

number of parameters in the design space [14].

While the FF surrogate models allow for more flexibility and visualizations, they require

far more training samples than do SV surrogate models to produce reliable results. The user must

consider whether or not the associated benefits are worth the resources required to create the train-

ing data. If not, the SV surrogate models provide a good alternative. With far fewer training

samples required, creating these surrogate models is less computationally expensive. They allow a

user to explore the changes in MAC values across the design space very quickly, as well as detect

mode switching behavior, in the same way as the FF surrogate models. Though they cannot adapt

to show comparisons with new reference designs, less resources are needed to create new training

data and train new SV surrogate models.

If SV surrogate models are chosen, one potential pitfall is that there is no guard against

predicting values outside the range of acceptable MAC values: sometimes they predict values

below 0.0 and above 1.0. This can be seen in the SV MAC values in both Fig. 4.6 and Fig. 4.7.

This behavior seems to occur in the areas where the surrogate model has most difficulty matching

the erratic nature of the real system, such as in cases of mode switching. It is not present in FF

surrogate models because the MAC calculations are performed after predictions are made, and

the MAC equation does not produce results outside of that range. However, the SV surrogates,
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although trained on proper MAC values, can produce a regression fit to nonlinear data that causes

the predicted values to vary outside the range.

4.7 Conclusions

This research analyzed the use of surrogate models to predict the MAC values between two

different mode shapes, specifically for a jet engine compressor blade. Although this study uses

a jet engine compressor blade for its study, the methods described are not limited to this specific

geometry.

Previously, SV surrogate models had been used to predict these MAC values; this research

applied FF surrogate models to the same problem, and compared the results of the SV and FF

surrogate model methods. It was proposed that using surrogate models to predict the MAC values

for various comparisons between mode shapes across a design space and a reference mode would

allow a user to interactively identify modes and detect mode switching in the design space.

It was found that the accuracy of both methods is affected by the number of the parameters

in the design space and the number of training samples used to train the surrogate models. The

number of training samples required is greatly increased when trying to predict mode switching

behavior. While this is true for both SV and FF surrogate model methods, the FF surrogate models

require a much larger number of training samples to achieve the same level of accuracy as the SV

surrogate models.

The benefits of using the FF surrogate model method were described. The usefulness of

these benefits varies in accordance with the level of accuracy. When using FF surrogate models

to predict mode shapes, the MAC value can be calculated for a comparison with any mode and

any reference design; the comparison is not static like it is in the SV surrogate modeling methods.

In addition, because the displacement response is predicted for every node on the part, a three-

dimensional representation can be displayed that updates in response to new parameter inputs in

real time, extending the ability of the user to explore and evaluate the design space. Finally, both

SV and FF surrogate models could allow the predicted MAC values to be displayed on a MAC

table that can update in response to new parameter inputs in real time.
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CHAPTER 5. OPTIMIZATION

Because a design space is often large and complex, optimization is an important tool for

conducting design space exploration and finding improved designs. The methods of the previous

chapters all could benefit from optimization: finding designs with specific stress criteria on differ-

ent regions of part (e.g., the user study from Chapter 2), determining designs that have acceptable

levels of fatigue risk (e.g., below a certain %G value on the Goodman diagram in Chapter 3), or

designs that have mode shapes that match a desired pattern (e.g., the MAC equation in Chapter 4).

This chapter explores the benefits of using FF surrogate models in optimization routines,

with a focus on design space exploration and design improvement (RQ1, RQ3). Because the FF

surrogate models make nodal predictions, every node’s result can be used in the optimization.

These results also all inherently pertain to a geometric location; thus, unlike SV surrogate models,

the results of a FF surrogate model prediction can be used in an optimization to define objectives

and constraints based on location. These spatially-defined objectives and constraints offer unique

methods for controlling the optimization and searching for specific results. Although the accuracy

is not compared with SV surrogate models, the differences in possible optimization techniques

between FF and SV surrogate models is discussed (RQ2).

While these methods could apply to any of the preceding methods and applications in

this thesis, the techniques are demonstrated with steady stress only for simplicity. The research

objective of determining if FF surrogate models can be used in real engineering applications (RQ1)

was answered in the previous two chapters by predicting a specific kind of engineering data; in

this chapter, optimization is treated as a worthy engineering application on its own. Thus, the

complexity of combining the other results is beyond the scope of the study. This chapter’s work

does expand on several of the design space exploration activities used in the experiments of Chapter

2.
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This study is being cleared by export control at the industry research sponsor and will be

submitted to the journal of Structural and Multidisciplinary Optimization in August 2019.

5.1 Introduction

Engineers conduct design space exploration during the early phases of design in order to

explore potential variations of structural parts. The design space is the collection of all possible

design variations. Each design in the design space is uniquely defined by the value of its design

parameters. When used with a parameterized model, the space may be explored by varying these

parameters, running simulations at critical points, and examining the results (stress, displacements,

etc.).

Optimization routines provide an algorithmic and efficient manner by which to explore a

design space and obtain an “optimum” design. The design parameters are generally the inputs

to the optimization, and the responses to these design changes provide a way for evaluating the

design. These optimization routines often rely on callable functions in order to obtain the response

of the designs to the design parameter changes. These functions allow the optimization to iterate

over a design space by adjusting the design parameters and determining if the responses satisfy

pre-defined constraints and objectives [80].

While analytical functions are preferred, they are rarely available for complex behavior;

finite element analysis (FEA) is used instead to simulate the behavior. Since these FEA results

are obtained by running computationally expensive simulations, including them in an optimiza-

tion routine can severely slow the process and make thorough design space exploration infeasi-

ble [11, 12, 67, 77, 79–81, 88–90]. When optimization routines are used to explore a design space,

these same limitations make efficient searches difficult to achieve. Although computing power has

increased over time, the growing need for more complex models makes the computational cost of

FEA simulations a continuing problem [5]. Optimization routines using these expensive analyses

must be carefully designed to avoid wasted resources or long convergence times.

To overcome the high computation time needed for expensive simulations, many aerospace

designers employ surrogate models to quickly predict desired results [5, 7, 8, 12, 66]. Surrogate

models (also known as response surface models, metamodels, regression models, or emulators [6])

create simplified mathematical relationships between inputs and outputs of a system. Using new
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input values, the surrogate models can then predict results in a fraction of the time it takes to

perform the original calculations [6, 12, 77]. These surrogate models are often used in design

space exploration or optimization routines in order to evaluate many design variations without

the prohibitive cost of full simulations [7–12, 77]. They provide cheap approximations of the

expensive simulations in the form of a callable function. This makes including certain results from

FEA simulations in an optimization routine feasible.

Most surrogate models map a set of inputs to a single output value. These types of surrogate

models will be referred to as single-value (SV) surrogate models. They cannot predict the response

of an entire system, but instead predict a single value that represents the system (see Fig. 5.1 (top)).

Optimization routines often employ these surrogate models in order to obtain cheap estimates of

the system’s outputs [11, 17, 77, 91]. SV surrogate models are widely used; however, by only

predicting single values, the information SV surrogate models provide in an optimization routine

is limited [7]. Single values provide little insight into the detailed differences between two complex

objects [13]. While values like the maximum stress and weight are important indicators of model

quality, a good design is ideally determined by patterns and relationships between the nodal results

across the entire part.

In recent years, methods have been developed for using surrogate models to predict the

behavior of every node in an FEA simulation [14–16, 92–94]. They generally take geometric pa-

rameter values as inputs and predict FEA results for the entire part. Like SV surrogate models,

these surrogate models may be treated as a callable function. Previous work has shown that, under

certain conditions, these surrogate models can predict the results in real time, allowing interactive

design space exploration with a complete prediction and visualization of the results [14, 92–94].

The nodal results provide a much more detailed and complete prediction of the structural FEA

response than do SV surrogate modeling methods. It has also been shown that, in some appli-

cations, these surrogate models can predict results with greater accuracy than the SV surrogate

models [14, 94].

Because this surrogate modeling method predicts an entire field of responses from a FEA

simulation, these will be referred to as full-field (FF) surrogate models. This work uses the ter-

minology of SV and FF surrogate modeling methods in order to provide a distinction between

these different uses of surrogate models. The difference between SV and FF surrogate models is
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illustrated in Fig. 5.1: while SV surrogate models only predict a single value, FF surrogate models

predict values for each node on a part’s FEA mesh.

f(x)
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node1

(x)

SV:
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f
node2

(x)
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x

x

x

x

Figure 5.1: (top) Single-value (SV) surrogate models only predict one value that represents the
response of the entire part across the design space. (bottom) Full-field (FF) surrogate models
predict the response of each node on the part across the design space.

The ability to quickly obtain a complete prediction of the FEA nodal results in the form of

a callable function suggests that FF surrogate models would be well suited for use in optimization

routines. While previous work has demonstrated how FF surrogate models could be used in various

design space exploration tools and activities, this research explores new FF-enabled techniques for

improving a design and efficiently searching a design space with optimization routines. Specifi-

cally, these techniques are used to control the optimization in spatially-defined ways that are not

possible unless the complete nodal response is available. The Purdue model of a jet engine com-

pressor blade is used in the examples, but these methods apply to any three-dimensional structural

FEA model.

A brief review of previous work concerning SV and FF surrogate models will be given in

Section 5.2. This will be followed by a description of how the surrogate models and data used in

this study were created in Section 5.3. Section 5.4 presents case studies that demonstrate how FF

surrogate models enable enhanced optimization techniques for design space exploration. Finally,

the conclusions will be summarized in Section 5.5.
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5.2 Background

Finite element analysis (FEA) is a common engineering tool used for obtaining the struc-

tural response to a set of boundary conditions for a given part. FEA programs, such as ANSYS,

take a two or three dimensional model of a part and convert it into a finite element mesh made up

of many interconnected nodes. The program determines the response to the boundary conditions

by solving equations at each node of the mesh. These responses could include values such as the

amount of physical displacement or stresses caused by the loads on the part.

SV surrogate models have been used to predict specific values obtained from FEA results,

such as the maximum stress of a part, the average nodal displacement of a part, or the response

of a specific “monitor” node at some location of interest [7, 67]. These types of surrogate models

have also been used to predict many kinds of results in a jet engine, from vibrations in compressor

and turbine bladed to aerodynamic coefficients experienced in various nozzle types [8, 11, 66, 67].

Specifically, SV surrogate models have been used to predict single-valued FEA results inside of

optimization routines. This has been described as “meta-model based design optimization” [95].

These predicted FEA values have included maximum stresses [7], displacements [7], aerodynamic

coefficients [11, 96], physical properties [91], and natural frequencies [12, 83, 86]. These appli-

cations demonstrate that single values can be sufficient for some cases, but these SV surrogate

models do not describe the full response of a part with as much detail as a full simulation.

FF surrogate model sets have been used to predict the full stress and displacement response

of each node in a FEA model [14–16]. Both Heap et al. and Bunnell et al. were able to approach

“real-time” design exploration of finite element models by representing the nodes with surrogate

models [14, 16]. Bunnell et al. used a unique surrogate for every node’s stress, X location, Y loca-

tion, and Z location in order to predict the stress and geometric response to changes in geometry.

These collections of surrogate models represent an entire field of results from a FEA simulation.

Both Schulz et al. and Bunnell et al. were able to predict the results for an entire three-dimensional

finite element model [14, 15].

The FF surrogate modeling method does not share the same limitations of the SV surrogate

models. While SV surrogate models can only predict a single value, FF surrogate models can

predict the full response of the part. This allows for a more detailed and complete understanding of

the response. Geller et al. [7] noted that when single values are related to a geometric location, such
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as maximum stresses or displacements, they can be more difficult to accurately predict with SV

surrogate models. FF surrogates can produce better predictions because the values and geometry

are coupled, unlike with SV surrogate models [7]. Additional benefits are then possible, such as

mapping the predicted nodal responses onto a reconstructed three-dimensional visualization of the

FEA model [14, 15].

While surrogate models are convenient and make fast predictions, their results contain a

degree of error. The number of training samples, quality of training data, and type of surrogate

modeling method affects the amount of error in the predictions. When the training data for sur-

rogate models depends on computationally expensive FEA simulations, an important goal is to

achieve acceptable levels of accuracy with a minimum amount of training data [5]. Acceptable

accuracy varies depending on the application and field.

It has been shown that the relationship between surrogate accuracy and number of train-

ing samples is valid for both SV surrogate models [11, 12, 85] and FF surrogate model sets [14].

Bunnell et al. established that FF surrogate models predicting steady stress values approached 5%

normalized root mean square error (NRMSE) as the number of training samples increased [14].

Thelin et al. demonstrated that with 500 training samples, FF surrogate models predict the maxi-

mum steady stress with 53% less error than SV surrogate models [94]. For highly nonlinear modal

data, however, SV surrogate models have much lower error than FF surrogate models [93].

FF surrogate models are somewhat more difficult to create than SV surrogate models. Each

training sample consists of nodal results rather than a single value. For large numbers of training

samples and node counts, the amount of training data increases dramatically. With the increase in

training data, they also take longer to train than SV surrogate models. When used with optimiza-

tion, the introduction of nodal data can lead to slower solve times, more function calls, and more

complexity.

However, the ability to predict the full response and make reasonably accurate steady stress

predictions make FF surrogate models a desirable alternative to SV surrogate models in optimiza-

tion routines. While SV surrogate models are simpler to create, the information they provide to an

optimization routine is limited. The nodal predictions of FF surrogate models allow objective and

constraint functions to have more detailed control over the design. This research explores these

FF-enabled optimization techniques.
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5.3 Method

This section will discuss the basic principles for creating FF surrogate models of nodal

steady stress values. Fig. 5.2 illustrates the steps in this process. This study uses much of the same

basic workflow as described by Bunnell et al., and the interested reader is referred to [14] for more

complete details.

To train surrogate models with FEA data, it is necessary to first create a set of training

data [5, 10, 79, 83, 84]. The training data set for FF surrogate models may be constructed using

a design of experiments (DOE). The DOE finds a set of designs that adequately fill the design

space. The suggested number of designs in the DOE can depend on criteria such as computational

resources, model complexity, and number of dimensions. For a model with n input parameters,

each design instance is defined by an n-dimensional vector [26]. These parameters values often

control the geometry or conditions of a parameterized FEA model. The parameter values for each

design are considered the inputs for the surrogate model.

These parameter values are used to update the geometry of a parametric model, such as a

parameterized three-dimensional model. Rather than create a new finite element mesh for every

new geometry, a mesh-morphing process is applied to the baseline design’s mesh. This allows all

the designs in the training data set to have a common set of node numbers and relative locations

[14]. With these common meshes, there exists a sample of the behavior for each specific node

across all of the training data.

The mesh for each design is used in a structural FEA simulation, and the steady stress

results are stored [5]. FEA produces results such as stress or modal displacements for every node

on a model. The FEA results are considered the outputs for the surrogate model.

UPDATE 3D

GEOMETRY

GEOMETRY

MESH MORPH

SIMULATION

WRITE RESULTS

SOLVE FEA

STORE RESULTS

TRAINING 

SAMPLE DATA

ITERATE OVER TRAINING DOE:

Figure 5.2: The basic workflow for creating FF training data.
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The surrogate models are trained on these inputs and outputs, and develop a mathematical

function to describe the relationship between them. Because the training depends on samples of

the actual data taken from the design space, this is known as a sample-based method [10, 79].

Once trained, the surrogate models can then receive parameter values for new designs and predict

the full response of the part. Instead of executing a new simulation each time a design change is

made, a properly trained surrogate model can provide the desired output value very quickly without

expensive calculations. This process is shown in Fig. 5.3.

DESIGN 

PARAMETERS

FF

SURROGATE

MODEL

NODAL

RESULTS

Figure 5.3: FF surrogate models accept new parameter values and predict a design’s nodal results

Although this study focuses on the FF predictions of steady stress values for FF surro-

gate models, any nodal results could be used. Thelin et al. used FF surrogate models to predict

alternating stresses [94] and modal displacement values [93].

5.3.1 SV Surrogate Models

The techniques presented in this research use FF surrogate models, but can be combined

with SV surrogate models for additional constraints or objectives. There are some kinds of data that

simply make more sense to predict as single values, such as a part’s weight value. The examples

in this paper highlight unique FF surrogate model applications, but do use a SV surrogate model to

predict weight for an objective function in Section 5.4.2. Thus, it is worth noting here the general

process for creating a SV surrogate model.

To create a SV surrogate model that predicts a weight value, the weight is calculated for

each sample in the training data set. The surrogate model is trained with these weight values

instead of the complete nodal responses. New input parameters yield a prediction of the weight

only; the SV predictions provide no further insight to the part’s behavior.
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Table 5.1: Bounds for blade design parameters

Parameter Lower Bound Upper Bound

Angle -20 deg 20 deg
Chordroot 20.32 mm (0.8 in) 30.48 mm (1.2 in)
Chordtip 20.32 mm (0.8 in) 30.48 mm (1.2 in)
Lean -7.62 mm (-0.3 in) 7.62 mm (0.3 in)
Sweep -7.62 mm (-0.3 in) 7.62 mm (0.3 in)

5.3.2 Model

This study uses the transonic Purdue blade model of a jet engine compressor [18], which

is a “blade-alone” model. The Purdue blade was developed for research purposes and is a general

representation of a three-stage compressor blade. Further details about the Purdue research blade

can be found in [18]. This particular model has been meshed with 25000 nodes. The model

consists of various airfoil cross-sections with connecting surfaces. It has been parameterized with

the five parameters and bounds in Tab. 5.1. These parameters change the geometry of the model by

adjusting the profiles at the root and tip of the blade. The Angle parameter adjusts the difference

in the angle between the profile at the root and the profile at the tip. The two Chord parameters

adjust the chord length at the root and at the tip. The Lean parameter offsets the tip profile in a

direction perpendicular to the root profile’s chord, while the Sweep parameter offsets the tip profile

in the same direction as the root profile’s chord. This parameterization and associated controls are

discussed in [14] with more detail. Only the surface nodes are used in this study in order to reduce

computational costs.

5.3.3 Training Data

As described in Section 5.3, a training set of design parameters (inputs) and FEA results

(outputs) must be generated to train the surrogate models. An optimized Latin Hypercube was

chosen because it is a space-filling design [5, 12, 77, 83]. Based on preliminary studies of the

surrogate model accuracy, 500 samples were generated. Each of these samples was used to update

the parametric compressor blade model. The updated models were used to conduct structural

analyses in ANSYS, and nodal stress data was extracted for each sample.
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5.3.4 SQP

This study uses a sequential quadratic programming (SQP) optimization method called

sequential least squares quadratic programming [97]. SQP navigates in a bounded design space

and subjects the design to constraints [98]. The boundaries used in this study are the same as

those used in the DOE [77] (see Tab. 5.1). Using an optimization method involving constraints is

particularly helpful in the design of a jet engine compressor blade because the part is often subject

to various stress requirements that keep it under the maximum allowable stress. The SQP method

can also handle functions of several variables such as the input parameters used by the surrogate

models for each new designs [98]. These features make it an appropriate choice for the type of

optimization that this study will use.

The SQP method is one of the most efficient optimization algorithms and often gives more

accurate results than other algorithms [97]. It is a gradient-based method, which converges quickly

and is well suited for large design spaces [99]. However, it does not enforce feasibility of the

constraints at each step. Thus the SQP optimization is only guaranteed to be feasible at the end of

the search. This does provide a danger for searches that terminate early, as they are not guaranteed

to be feasible designs or even better than the starting point [97]. Any designs that terminated early

were rejected in this study as a consequence.

5.4 FF-enabled Optimization Techniques

The following cases explore and demonstrate optimization techniques enabled by FF sur-

rogate models. Because FF surrogate models give a complete three-dimensional prediction of the

response, it is possible to use spatially-defined constraints and objectives in an optimization rou-

tine. The FF surrogate models can be used to create constraints that apply to regions of nodes, or

used in objective functions that use the location of a node or the full response pattern as objects to

minimize or maximize. A summary of these techniques is presented in Tab. 5.2.

The techniques will make use of the following generic optimization problem:

Min f (X) or Max f (X)

s.t.

c(X)
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where f (X) is the objective function, c(X) is a constraint function, and X is set of cur-

rent design parameters. The optimization techniques will either minimize or maximize f (X),

depending on the objective. The specific constraint functions used will vary from application to

application.

Table 5.2: FF-enabled optimization techniques

Method Description

Regional constraints Constrain a subset of nodes
to be under a limit

Location-based objectives Finds designs where a nodal
response is nearer to/farther
away from a target node

Response pattern matching Finds designs with a similar
response pattern

5.4.1 Nodal Constraints

FF surrogate models allow optimization routines to use predicted information for every

node. Instead of only constraining a predicted global value, such as maximum stress, constraints

can be applied individually.

For an entire part, constraints can either be uniformly applied or vary across the nodes.

Constraints that are uniform, cu, across the entire part can be implemented in one of two ways.

The first predicts the results for each node, and then finds the maximum value in the predicted set.

This value is subjected to the constraint, λ , as indicated in Eqn. 5.1:

cu,max(X) : max([φ1,φ2, · · · ,φn])≤ λ (5.1)

where φi is the response value of an individual node and λ is the global constraint. Although the

constraint is applied to the maximum value only, the maximum value is obtained by predicting the
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results of all the nodes. This produces a more accurate prediction than using a SV surrogate model

prediction of the maximum stress only, as noted by Thelin et al. [93, 94].

The second method predicts the results for each node in the same manner, but then subjects

each individual node’s response to the constraint, λ , as indicated in Eqn. 5.2:

cu,i(X) : φi ≤ λ (5.2)

where φi is the response value of an individual node and λ is the global constraint. While these

methods are mathematically similar, they may cause different behavior in optimization routines.

The first (max) method creates one constraint, while the second (nodal) method creates n con-

straints for n nodes. With very large numbers of constraints, the optimizer requires more constraint

function evaluations in order to determine if the current iteration violates or satisfies the constraints.

Applying constraints to individual nodes may cause the optimizer to behave differently,

but it also enables more interesting constraint capabilities. Because constraints can be applied to

individual nodes, they also can be varied from node to node, cv. This allows the optimization to

apply a different limit, λi, to each node as indicated in Eqn. 5.3:

cv,i(X) : φi ≤ λi (5.3)

where φi is the response value and λi is the constraint of an individual node, i. These limits can vary

from node to node, or can vary between subsets of nodes. The next section presents an example of

applying nodal constraints to different subsets of nodes.

5.4.2 Regional Constraints

FF surrogate models allow constraints to be applied to each node individually. Rather

than constrain every node in a mesh, it may be desirable to constrain only certain nodes. Thus,

constraints can be applied to the nodes in different subsets, or regions, of a part. This allows

the designer to have more control over which designs are found within the design space by the

optimization routine. Beck et al. examined the effects and risks of localized responses on as-

manufactured blades, and used surrogate models to predict this behavior [2]. Regional constraint
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methods such as those presented here could be used to constrain localized, or regional, responses

in specific ways.

Implementation

Eqn. 5.2 shows the general case of using varied constraints for individual nodes. For the

regional constraint method, cregion,i, a very similar concept is used, but is applied only to a subgroup

of nodes. These constraints are made by assigning a limit to every node in a particular region as

shown in Eqn. 5.4:

cregion,i(X) : φregion,i ≤ λi (5.4)

where φregion,i is the response at node i of a region and λi is the constraint on node i. For n

nodes in the region, there will be n nodal constraints. The ability to constrain nodes individually

allows for much more nuanced control over the blade’s stress pattern. Additional regional or global

constraints could be applied for further control in the optimization.

Application Examples

To demonstrate this method, two regions were defined on the Purdue blade. Fig. 5.4 shows

these regions with the relevant nodes highlighted. The stress of each node in the regions used was

constrained to be equal to or less than a given limit.

Minimize f (X) : weight

s.t.

∀ nodes, i, in region

cregion,i(X) : σregion,i ≤ λi

The following examples show the results of using FF steady stress surrogate model pre-

dictions to constrain the stress response for the nodes in a particular region. The FF steady stress

surrogate model set was used to predict the stresses at each node on the blade. The responses

for nodes in the specified region were constrained, and all other nodal responses were left uncon-

strained.
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(a) Trailing edge root corner (b) Leading edge root corner

Figure 5.4: Nodal regions on the blade

50000 psi

0 psi

25000 psi

37500 psi

12500 psi

(a) Pressure surface (b) Suction surface

Figure 5.5: Baseline design.

The focus of this example is on the FF regional constraints; however, the optimization

cannot search for a design without a specified objective function. In order to simplify the problem

and clarify the effect of the regional stress constraint, the objective function for this example seeks

to minimize the weight of the part. A SV surrogate model was chosen for weight rather than a FF

surrogate model since weight is not a nodal value.
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Each optimization started from the baseline design shown in Fig. 5.5, which is considered

the center of the design space. At the baseline design, the global maximum stress is 36590 psi.

The maximum stress in the trailing edge region is 36590 psi and the maximum stress in the leading

edge region is 35367 psi. The weight at the baseline design is 0.108 lbs.

Fig. 5.6 shows the result of minimizing the weight while constraining the nodes in the

corner of the root and the trailing edge to be under 25000 psi. The optimum design has a global

maximum stress of 45640 psi, and a regional maximum stress of 18257 psi, which satisfies the

constraint of 25000 psi. The weight was reduced to 0.0746 lbs. In comparison with the baseline

design shown in Fig. 5.5, the global maximum stress is now located in the center of the suction

side of the blade.

50000 psi

0 psi

25000 psi

37500 psi

12500 psi

(a) Pressure surface (b) Suction surface

Figure 5.6: The optimization found a design that minimizes the weight and constrains the regional
maximum stress in the corner of the root and the trailing edge. Compare to Fig. 5.5.

Similarly, Fig. 5.7 shows the optimum design when the nodes at the corner of the root

and the leading edge were constrained to be under 25000 psi. The optimum design has a global

maximum stress of 35612 psi, and a regional maximum stress of 24970 psi, which satisfies the

constraint of 25000 psi. The global maximum stress is not located in the constrained leading edge

corner, but instead in the corner of the root and the trailing edge. The weight was reduced to 0.0697

lbs.

121



www.manaraa.com

50000 psi

0 psi

25000 psi

37500 psi

12500 psi

(a) Pressure surface (b) Suction surface

Figure 5.7: The optimization found a design that minimizes the weight and constrains the regional
maximum stress in the corner of the root and the leading edge. Compare to Fig. 5.5.

Different Starting Points

The particular design reached by the optimization can depend on the starting point used. If

the constraints are too demanding, the optimization’s search path may be limited to local minima

and not have the freedom to find the true global optimum. Thus, it is possible that the optimum

design found by the optimization may not be the true global optimum, and the optimization results

may vary. It is important to try starting the optimization from many different starting points in

order to confidently identify the global optimum.

Although this principle applies to all of the techniques in this study, it is only illustrated in

detail with this example for brevity. In this example, the SV weight prediction was minimized and

the nodes of the corner of the root and the trailing edge were constrained under 25000 psi. The

optimization was then tested with 100 different starting points generated with an optimized Latin

Hypercube.

Of the 100 starting points, 29 resulted in optimization paths that failed to converge within

the maximum allowable number of iterations. Some imposed constraints will create infeasible

designs. The optimization cannot create new results; it may only be used as a design exploration

tool to find existing results. If there are no feasible designs, the optimization will fail. However,
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71 starting points did result in successful optimizations; the failures were a result of poor starting

points rather than the absence of feasible designs in the design space. The failed optimization runs

were searching for a feasible design while trying to minimize the weight prediction. The maximum

stress in the trailing edge root corner for each failed design was above the constraint of 25000 psi.

Some starting points did not provide as clear of an optimal gradient and caused the search path to

remain in infeasible regions of the design space longer than the successful designs. Thus, while

feasible designs exist, some starting points can cause optimization routines to fail.

The average predicted regional maximum stress in the corner nodes for these successful

designs was 22500 psi. Fig. 5.8 shows the FF predicted and ANSYS regional maximum stress

values for the found optimum designs. The predicted values ranged from 17178 psi to 24999 psi,

all of which fulfill the constraint of 25000 psi. Though the objective and constraint functions did

not vary, the found optimum designs reached different results due to the different starting points.

While the majority of starting points resulted in values that were closer to the constraint of 25000

psi, some achieved much lower maximum stresses in the region. The objective searched for the

minimum weight; the stress in the region was only a constraint. However, the different starting

points greatly affected the stress in this corner. Only one starting point allowed the optimizer to

find the lowest maximum stress in the trailing edge root corner. This illustrates the value of using

different starting points in order to establish confidence that the optimization has found the desired

result.

When checked with ANSYS simulations, the average actual regional maximum stress was

found to be 21880 psi. Thus, the average percent error of the predicted regional maximum stresses

was 4.11%. Fig. 5.8 shows the range of values obtained in ANSYS for these optimum designs.

The histograms clarify the relationship between the FF predicted and ANSYS values. In these

results, the ANSYS values for some points are actually higher than the FF predictions, and violate

the 25000 psi constraint. However, the ANSYS values for other points are actually lower than

the prediction, as in the case of the lowest point found. Thus, depending on the design, the FF

predicted results could be better or worse than the actual results. The FF surrogate models used

in this study had some error, as do all surrogate models. The errors in the models depend on the

particular method in which the surrogate models were created. Greater accuracy can be obtained

by training the surrogate models with more training points or by other methods [93].
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Generally, it is important to verify surrogate model predictions by checking the results with

the full simulation (such as in ANSYS). To allow for this error, a designer may want to use a lower

constraint than the desired constraint. For example, in order to avoid finding designs that have

feasible predictions but are actually infeasible, a designer in this study could reduce the constraint

to 24000. This helps ensure that, even if the ANSYS values are higher than the predictions, they

do not violate the desired constraint.
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Figure 5.8: The maximum steady stress values in the trailing edge corner region for 71 successful
optimum designs. Using different starting points in the optimization can produce different optimal
and results.

5.4.3 Location-based Objectives

The location of certain responses on a part can be a critical factor in accepting or rejecting

a design. These specific responses could include the global maximum stress, a maximum displace-

ment, or some other unique response that is found at a particular node. For example, when the

maximum stress of a compressor blade is located at the root, it can signal a structural risk. This is
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especially true if the location of the maximum alternating stress is in the same location, leading to

compounding stresses and a higher risk of eventual fatigue failure at that point [69]. In the case of

mode shapes (the pattern of displacements due to vibrations), high displacements in certain loca-

tions could also present risks. Thus, it may be desirable to search for designs in the design space

based on the location of the maximum responses.

The FF surrogate models predict the response of each node on a part. Because each node

inherently has an individual relative location on the part, the FF surrogate models also can be used

to predict the relative location of each response. Bunnell et al. [14] predicted the steady stresses,

but also the Cartesian coordinates of each node in space to visualize the geometry of each new

design. Using these features, FF surrogate models may be used in an optimization to control the

location of specific responses.

Implementation

A target node, t, can be used to control the location of the response. This is the node where

the designer would prefer that the response would occur. The objective function predicts the full

nodal response of the part. The node where the global maximum response is actually located, m,

is identified for each new iteration of the optimization. The global maximum response can be a

maximum stress, displacement, or other result value as long as it is located at a single node. Then,

the predicted Cartesian coordinates of the target node (e.g., tx, ty, and tz) and the node with the

global maximum response (e.g., mx, my, and mz) are obtained. The Euclidean distance δ between

the nodes is calculated with Eqn. 5.5:

δ =

√√√√ 3

∑
k=1

(tk−mk)2 (5.5)

where d is the number of dimensions. This distance is returned to the optimizer as the result of

the objective function. By minimizing this distance, designs are found in which the node with the

global maximum response approaches the location of the desired target node.
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The previous section described how using nodal constraints over a region can help to con-

trol the location of the global maximum stress. Here, the nodal location of the global maximum

stress will be controlled with the objective function and a target node.

Application Examples

To demonstrate the method, a target node was chosen. Fig. 5.9 (top) shows the baseline

design, where the global maximum stress is indicated with a black point and the target node is

indicated with a grey point. The optimization used the method described above with the FF steady

stress surrogate model set to minimize the distance between the target node and the node with the

global maximum stress. The optimization found a design that minimized the distance between the

points as shown in Fig. 5.9 (bottom). The location of the node with the global maximum stress is

now nearly at the location of the target node.

Min f (X) :
√

∑
3
k=1(tk−mk)2 (Eqn. 5.5)

The node with the global maximum response can also be driven away from the target node.

In this application, the exact location of the global maximum response is less important than en-

suring it does not occur at the target node. The objective function uses exactly the same process,

except the optimizer maximizes the distance δ between the nodes. Fig. 5.10 (top) shows the base-

line design again, where the global maximum stress is indicated with a black point and the target

node is indicated with a grey point. In this example, the two nodes begin close to one another.

Fig. 5.10 (bottom) shows the optimum design, where the distance between these two points has

been maximized.

Max f (X) :
√

∑
3
k=1(tk−mk)2 (Eqn. 5.5)

Maximizing the distance between two response locations is especially useful when consid-

ering both steady and alternating stresses. Consider the example in Figure 5.11(a). This shows the

steady and alternating stresses for a starting design, as well as the percent Goodman (%G) values

mapped onto the geometry and the Goodman diagram. The nodes at which the maximum steady

stress and the maximum alternating stress occur are both very close together, and the %G values
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Figure 5.9: The optimization finds a design that minimizes the distance between the maximum
stress (m) and a target node (t). Views depict the bottom half of the suction side of the blades.
Colorscales are not common in order to clarify the max stress locations.

are relatively high in this area (%Gmax,nodal = 56%). More information about the %G values is

given in Chapter 3. Figure 5.11(b) shows the optimum design after maximizing the distance be-

tween these two responses. Now, the maximum steady stress is no longer in the same area as the

maximum alternating stress. This has helped the %G values in the area to be reduced by about

half (%Gmax,nodal = 27%). Thus, this optimization strategy can be used as an effective method for

reducing the risk of fatigue failure.

Considerations

Again, there may be designs in the design space that are slightly more optimal than the

design found by the optimization. For the example in Fig. 5.9, the design space did contain designs
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Figure 5.10: The optimization also can find a design that maximizes the distance between the
maximum stress (m) and a target node (t). Colorscales are not common in order to clarify the max
stress locations.

in which the node with the global maximum stress was exactly at the target node. Using different

starting points could allow the optimization to find these closer matches. Because the FF surrogate

models can be used to predict results quickly, a designer may want to interactively explore the

design space around the optimum design in order to determine that closer matches do not exist.

This type of interactive exploration is described in [14] and [92–94].

This method requires consideration of the general part geometry. Because the Euclidean

distance between two nodes does not provide any information about what face the nodes are on,

the optimization may find that the minimum distance between the nodes is through the part. This

is especially problematic if the part is very narrow with respect to one or two dimensions, such as

the thin compressor blades used in these examples. For example, when minimizing the distance as
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(a) Starting design
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(b) Optimum design

Figure 5.11: Maximizing the distance between the maximum steady stress (s) and the maximum
alternating stress (a) can reduce the fatigue risk on the part. Steady and alternating stresses are
shown next to the percent Goodman values mapped onto the part and the Goodman diagram.
Colorscales are not common in order to clarify the max stress locations and different types of data.

depicted in Fig. 5.9, using the unaltered distance formula in Eqn. 5.5 actually yields the optimum

design in Fig. 5.12.

The problem can be accounted for by scaling the coordinate values to have similar mag-

nitudes. Eqn. 5.6 shows the general method for scaling the coordinates in the distance formula,

where α are the scaling factors for each coordinate. In these three-dimensional examples, since the

compressor blade model is very narrow with respect to the Y direction compared to the X and Z

coordinates, the coordinates were all scaled to have similar magnitudes. This allowed the optimizer

to treat each dimension more equally, and obtain the results presented in Fig. 5.9.

δ =

√√√√ 3

∑
k=1

αk(tk−mk)2 (5.6)
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Figure 5.12: Without scaling, the minimum distance found could be through the part.

5.4.4 Response Pattern Matching

The previous two methods have shown how nodal constraints or nodal objectives can be

used in optimization to have control over the response at specific regions or nodal locations. How-

ever, for certain types of design exploration, it may be important to have control over the entire

nodal response pattern.

For example, a specific stress pattern may have been previously analyzed and studied, but

the current design’s global maximum stress may exceed the desired allowable stress. A designer’s

goal would be to find a design that has as similar a stress pattern as possible, but with a reduced

maximum stress.

Designers are also sometimes given a specific stress pattern and asked to find the geometric

parameters that would create such a response. In this case, the goal of design space exploration is

to find a design that produces a matching stress pattern.

Manually searching the design space to find a design with these responses is time-consuming

and prone to human error. An optimization routine that can use the entire response as an objective

provides a more efficient method for finding the desired design as well as its parameter values.
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Implementation

A design is chosen before optimizing, and the response pattern saved. This set of nodal

responses becomes a target pattern that the optimization must try to match. During each iteration

of the optimization, the FF surrogate models are used to predict the full nodal response of each

new design. The nodal responses of the target pattern and the current stress pattern are scaled from

0.0 to 1.0. Then, the nodal responses are assembled into two vectors, each of the form shown in

Eqn. 5.7.

φ =
[
σ1 σ1 ... σn−1 σn

]
(5.7)

The modal assurance criterion (MAC) is an equation which finds the degree of similarity

between two vectors [22, 23]. Usually, it is used to compare mode shape vectors for mode shape

identification. The MAC equation may also be used to find the similarity between the two stress

pattern vectors. This application is shown in Eqn. 5.8, where {φT}i is the ith node of the target

pattern vector, and {φD}i is the ith node of the current design’s pattern vector. The MAC equation

returns values between 0.0 to 1.0, where values close to 0.0 indicate poor correlation and values

close to 1.0 indicate high correlation [23].

MACT :D =
|∑n

i=1 {φT}i {φD}i|
2

(∑n
i=1 {φT}i {φT}i)(∑

n
i=1 {φD}i {φD}i)

(5.8)

The starting point of the optimization should not be the design which generated the target

pattern; if the starting point and the target design are the same, the MAC value will already be

maximized at 1.0 (a perfect correlation). The objective function predicts the stress contours and

computes the MAC value. The optimizer then maximizes the MAC value. Constraints can be

added to this objective to help the optimization to improve the design.

Max f (X) : MACT :D value (Eqn. 5.8)

s.t.

cu,max(X) : max([σ1,σ2, · · · ,σn]) ≤ λ (Eqn. 5.1)
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Application Examples

For this example, the chosen response pattern is the steady stresses at each node shown in

Fig. 5.13 (top). The global maximum steady stress of this pattern is 52130 psi. The goal of the

optimization is to find a design with a similar pattern but lower stresses. Thus the optimization

seeks designs that have high MAC values but constrains the global maximum stress to be below

40000 psi. The optimum design found by the optimization is shown in Fig. 5.13 (bottom). The

geometry of the optimum design is very similar, but the chord at the tip is slightly smaller than the

starting design. The stress pattern is nearly identical with MAC= 0.996. The greatest difference

between the target design’s and optimum design’s patterns is that the global maximum stress at

the optimum design is 39999.9 psi. This optimization improved the design while maintaining the

desired stress pattern.

Because there is not always a design in the design space that fits the criteria, the optimum

design is not always a perfect match. Fig. 5.14 shows a different pattern matching example where

the pattern of the optimum design does not match the target pattern as closely. The MAC value is

0.940, indicating that the match is still very good, but not perfect. This is most apparent in the high

stress areas on the front of the blade. The target design’s pattern has two distinct regions of high

stress, while the optimum design’s pattern has only one. Many other details of the two patterns

do match, such as the stresses around the corners and the general distribution of stresses. The

geometry difference between the starting and optimum designs are also larger than the previous

example. The optimum design has 0.05 in of positive Sweep, 12 deg positive Angle, and 0.84 in

Chordroot while the target pattern’s design had 0.29 in negative Sweep, −10 deg negative Angle,

and 1.14 in Chordroot . However, the pattern found by the optimization does satisfy the criteria and

is considered a success. If maintaining similar geometry is also an important consideration to the

designer, then further constraints or penalties could be added to control for geometric variation.

5.5 Conclusions

This research demonstrated new techniques for optimization of three-dimensional FEA

results using full-field (FF) surrogate models. FF surrogate models predict the complete nodal

response of FEA results very quickly without the need for computationally expensive simulations
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Figure 5.13: Using the MAC equation, the optimization found a similar stress pattern with stresses
that met the constraint. Colorscales are not common in order to highlight the relative stress patterns.

at run time. This allows optimization routines to use much more detailed information about a

structural part in constraint and objective functions.

These methods extend the ability of optimization routines to have control over FEA results

at a nodal level. Rather than rely on cheap but limited predictions of single values, the optimiza-

tion can control regions, nodal locations, and complete patterns of responses as it traverses a design

space. This enables designers to be much more specific when searching a design space with opti-

mization, but also to more easily improve designs in spatially-defined ways.

Because FF surrogate models can predict FEA results for each node, they can be used to

apply individual constraints to the nodes. By defining regions of interest on a part, FF surrogate

models make it possible to constrain specific regions differently than others. It was demonstrated
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Figure 5.14: The design space may not always have a design that perfectly fits the criteria. Col-
orscales are not common in order to highlight the relative stress patterns.

that the optimization successfully found designs in the design space that minimized the objective

while respecting the regional constraints.

Objective functions that minimized a distance formula could find designs that either drew

a particular response on the part’s surface closer to a target location. The inverse case of driving a

response away from a particular location was also shown. These methods were successful, but do

require some tuning for the best results.

Finally, a method was described for searching a design space for designs with similar re-

sponse patterns. This employed the modal assurance criterion as a means for determining similarity
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between the three-dimensional responses. When combined with other constraints, designs may be

improved while maintaining the same basic response patterns.

The examples in this research focused on design space exploration activities for the Purdue

model of a jet engine compressor blade, but the methods could be used in other applications.

The compressor blade model could be replaced with any three-dimensional structural FEA model.

Further exploration would need to be made in order to make conclusions about the efficacy of

the methods for the results and specific surrogate models used. Also, although this paper focused

on early design exploration activities, using FF surrogate models for the optimization of three-

dimensional geometry and nodal results could apply to other activities such as updating models to

match experimental data.
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CHAPTER 6. CONCLUSION

This chapter presents general conclusions pertaining to the preceding studies and results,

as well as a brief discussion about future work related to this research. While the publications

found in Chapters 2 - 5 contain conclusion sections that pertain to those individual studies, the

conclusions in this chapter combines the results in the context of the overall research goals. This

research set out to answer three main questions:

RQ1 Can full-field (FF) surrogate models be used reliably in real engineering and design space

exploration applications?

RQ2 How do FF surrogate models compare with single value (SV) surrogate models in these

activities, especially in terms of accuracy and ability?

RQ3 What additional design benefits are gained by using FF surrogate models in the design pro-

cess?

This research concludes that FF surrogate models can be used in real engineering analyses

for certain types of data where SV surrogate models are typically used. Accurate predictions

of the steady and alternating stresses allow FF surrogate models to be used in creating dynamic

Goodman diagrams for predicting fatigue life. The steady and alternating stresses, as well as

Goodman-related measures that are calculated with those stresses, can be predicted with better

accuracy than SV surrogate models. However, highly nonlinear data, such as mode shapes, are

more prone to error when predicted with FF surrogate models rather than SV surrogate models.

For these types of data, FF surrogate models are only reliable with an extremely large amount

of training samples. This makes SV surrogate models a better choice. FF surrogate models also

perform well in optimization routines for design space exploration.

FF surrogate models are found to present unique design benefits when used for design space

exploration activities. The ability to predict the response at every node in real time enables an
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interactive design space exploration experience, where predicted three-dimensional results appear

immediately as direct responses to changes in the design parameters. This leads to greater intuition

and understanding about the behavior of a part through the design space. The benefits gained are

specific to the applications; generally, presenting all the nodal data for a part allows a designer

to quickly evaluate design variations as a whole instead of through abstracted single values that

represent the results.

The three-dimensional result predictions also provide opportunities for new visualizations

that enhance the design process. The difference model simplifies the complex differences between

two designs, and is shown to make a significant difference in the speed and accuracy of certain

design comparisons. Every node’s prediction can be plotted onto a Goodman diagram instead of

a single conservative point. Values from the Goodman diagram can be plotted directly onto the

part’s three-dimensional visualization and indicate which locations on the part are at most risk of

failing in fatigue. The results of spatially-defined optimization criteria can be displayed to the user.

6.1 Future Work

While FF surrogate models have been demonstrated and tested in real engineering applica-

tions, their potential is still just being uncovered. This thesis presents research has helped discover

domains where FF surrogate models are helpful, as well as others where they are not. Comparisons

with current SV surrogate methods illustrate the advantages or disadvantages gained by using FF

surrogate models. However, the methods and examples, while using real analysis methods and

example geometry, have been focused on general principles instead of a specific implementation.

Further studies ought to apply the principles and methods of this research to the design of a specific

part and provide concrete examples of their benefits. As the findings of this research are applied

and shown to be truly beneficial, confidence in these methods will increase to the point that they

may be incorporated into current design practices.

This research examined the engineering activities of design space exploration, fatigue anal-

ysis with the Goodman diagram, mode shape comparisons with the modal assurance criterion, and

optimization. There are many other types of engineering analyses and activities in which FF surro-

gate models could be used. Fields such as heat transfer, fluid dynamics, and material studies could

potentially benefit from FF surrogate modeling. The principles presented in this thesis should ap-
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ply to the use of FF surrogate models in any of these applications, but like the individual studies

in this research, each new application of FF surrogate models will likely reveal specific details

regarding implementation, prediction quality, and added benefits.

The examples presented in this thesis applied FF surrogate models to jet engine design and

a specific jet engine compressor blade model. The methods are generic to any geometry, and thus

further research should demonstrate the usefulness of these methods in other contexts. Due to

the cost of creating training data and setting up the framework, these other geometries and design

applications ought to have the same challenges of computational cost and result complexity as does

jet engine design. This will provide motivation for the applications and provide useful knowledge

to those fields. Potential applications could include simulations of crash testing in the automotive

industry, spaceflight design, and manufacturing equipment design.

Highly nonlinear data, such as mode shapes, were found to limit the utility of FF surrogate

models; unless a prohibitively large amount of training data is used, the FF surrogate models suffer

from high inaccuracy. Future studies should examine strategies for overcoming these obstacles.

Preprocessing of the training data could help.

These applications were examined independently of each other. Future work could synthe-

size the methods in this study. An optimization that includes the percent Goodman values would

need to ensure that similar mode shapes are being used from one design to the next; therefore, the

modal assurance criterion would have to be used in order to properly determine if the correct mode

shape is predicted. This level of synthesis is beyond the goals of this research, and would require

further work to overcome the problems with modal data found in Chapter 4. However, this would

provide a useful contribution to promoting industry confidence in this work.
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